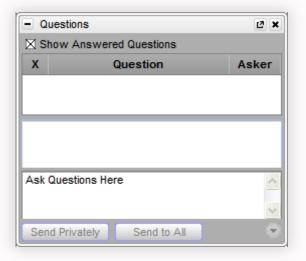


Mixed Models: How to Effectively Account for Inbreeding and Population Structure in GWAS

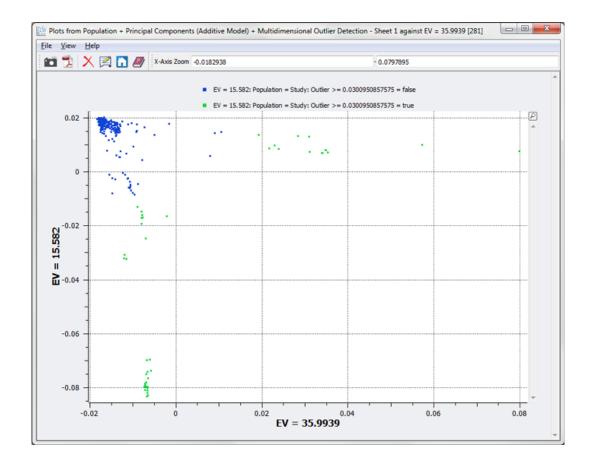
Greta Linse Peterson, Senior Statistician June 5, 2013



Questions During the Presentation

Use the Questions pane in your GoToWebinar window

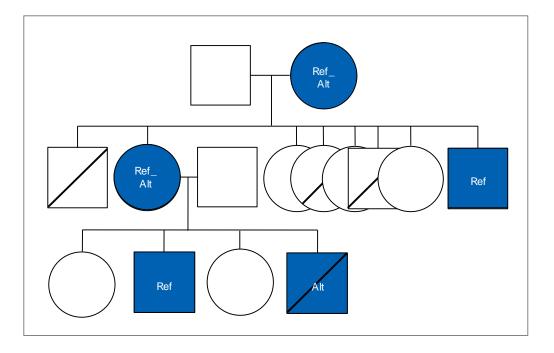
1	Background of GWASApproaches
2	Review of Select Mixed Model Methods
3	Mixed Models in SVS
4	Demo
5	Compare Results



[Poll: What category of species are you studying?]

A brief background of GWAS

- First the naïve approaches: Correlation/Trend Test, Linear/Logistic Regression
- Batch Effects, Population Structure and sharing of controls violated assumptions of the naïve approaches.



Goal of better GWAS approaches

 Minimize false positives, obtain cleaner results, don't over correct the data to miss out on interesting results

 Handle population, family-based or mixed study designs.

Essential Definitions

Mixed Linear Model:

- $Y = X\beta + Z\mu + \epsilon$ where $\mu \sim N(0, \sigma_G^2 K^*)$, $\epsilon \sim N(0, \sigma_e^2 I)$ and $Cov(\mu, \epsilon) = 0$
- Fixed Factors:
 - Sex, age, known loci

Random Effects:

- Family or Population Structure, batch effects

Kinship Matrix:

 Any N x N matrix that describes the pairwise relationships between N samples

• Null Hypothesis (generally): $\sigma_G^2 = 0$

Naïve GWAS	GWAS + Correcting for Population Stratification	Mixed Model Approaches
Corr/Trend Test Regression Analysis	Genomic Control Structured Association (STRUCTURE) PCA Correction (Eigenstrat Price 2006)	EMMA (Kang 2008) BLUP/GBLUP Approaches for GWAS (Zhang 2008) EMMAX (Kang 2010) MLMM (Segura 2012)

Methods for MLMs in GWAS

1	Background of GWASApproaches
2	Review of Select Mixed Model Methods
3	Mixed Models in SVS
4	Demo
5	Compare Results

EMMA/EMMAX/MLMM Relationship

Methods Overview

Regression with PCA Correction

- Accounts for the relationship between samples with Principal Components
- Need to know how many components to correct for

EMMAX

- Adjusts for the relationship between samples using a kinship matrix
- Approximates the variance components and uses the same variance for all probes
- Tests a single loci at a time

MLMM

- Adjusts for the relationship between samples using a kinship matrix
- Approximates the variance components and uses the same variance for all probes, but recomputes at every step
- Stepwise EMMAX, assumes multiple loci are associated with the phenotype

GBLUP

- Adjusts for the relationship between samples using a kinship matrix
- Computes allele substitution effects to determine best genomic predictors of the phenotpye

	Population Structure as Fixed Effect	Multiple Loci	EMMA used	Uses Kinship as Random Effect	Output Random Effect Component	Compute Allele Substitution Effects	Compute P-Value
Regression with PCA	Yes	No	No	No	No	No	Yes
EMMAX	Yes	No	Yes	Yes	No	No	Yes
MLMM	Yes	Yes	Yes	Yes	No	No	Yes
GBLUP	No	No	Yes*	Yes	Yes	Yes	No

* Uses EMMA for REML estimates

Regression with PCA method overview

First compute the principal components

- Assumes the first few components are associated with the largest batch effects including population structure, plate effects, etc.
- Decide how many components to correct for
- Either run regression on PCA corrected data or on genotype data including top principal components as fixed factors

OPEN® ACCESS Freedy available colline POpulation Structure and Eigenanalys Nick Patterson ¹⁷ , Alkes L Price ^{1,2} , David Reich ^{1,2} I lead Intuitier of Howard and ML Cambridge, Mauschuetts, United States of America, 2 Department of Genetics, Howard M Multide States of America Current methods for inferring population structure from genetic data do not provide for population differentiation. We discuss an approach to studying population structure (print that was first applied to genetic data by Carabity Softward Multi-Softward and Onesques. We place the met footing, using results from modern statistics to develop formal significance tests. We also change ⁻¹ Abnessments about the ability to detect structure in genetic data. ARTICLES Custor	edical School, Boston, Massachuretts, mal significance tests for ipal components analysis) thod on a solid statistical uncover a general *phase
Nick Patterson ¹⁷ , Alkes L Price ¹³ , David Reich ¹² Tende Install, ed Havad and MC, Cambridge, Mauschusetts, United States of America 2 Department of Genetics, Havard M Michael States of America 2 Department of Genetics, Havard M indef Stat	edical School, Boston, Massachuretts, mal significance tests for ipal components analysis) thod on a solid statistical uncover a general *phase
I Boad Instants of Howard and MT, Cambridge, Mauschusetts, United States of America, 2 Department of Genetics, Harvard M Instant States of America Current methods for inferring population structure from genetic data do not provide for opolution differentiation. We discuss an approach to studying population structure (princ hat was first applied to genetic data by Cavalli-Sforza and colleagues. We place the me obting, using results from modern statistics to develop formal significance tests. We also change? Obtanomenon about the shill to detact structure in genetic data. which american datas a Session ARTICLES Jatas	mal significance tests for ipal components analysis) thod on a solid statistical uncover a general *phase
when States of America Current methods for inferring population structure from genetic data do not provide for population differentiation. We discuss an approach to studying population structure (princ hat was first applied to genetic data by Cavalli-Sforza and colleagues. We place the me position, using results from modern statistics to develop formal significance tests. We also hange ^a observations about the ability to detact structure in genetic data, which emerges a sets ARTICLES latas	mal significance tests for ipal components analysis) thod on a solid statistical uncover a general *phase
opulation differentiation. We discuss an approach to studying population structure (print hat was first applied to genetic data by Cavalli-Sforza and colleagues. We place the me ooting, using results from modern statistics to develop formal significance tests. We also hange ^{an} observations about the shifty to detect structure in cannetic data, which amazone ve ut latas ass ARTICLES latas	ipal components analysis) thod on a solid statistical uncover a general "phase
latas ARTICLES sess latas	
sess ARTICLES atas	
	genetics
ntro	
Ac	
cplor ata	
opul a Drincipal componente englysic correcte	
Principal components analysis corrects	for stratification
Principal components analysis corrects and ant in genome-wide association studies meret with or driver and Reich ^{1,2} , Nick J Patterson ² , Robert M Plenge ^{2,3} , Michael E Weinblatt ² der	
here & Alkes L Price ^{1,2} , Nick J Patterson ² , Robert M Plenge ^{2,3} , Michael E Weinblatt	³ , Nancy A Shadick ³ &
siti 0 David Reich ^{1,2}	
ider g ient g Population stratification—allele frequency differences between cases and controls due to curso structure structures structure in disease studie. We describe a method that analyse embidi	
We stratification on a genome-wide scale. Our method uses principal components analysis to	explicitly model ancestry differences
as fit populations, minimizing spurious associations while maximizing power to detect true asso	
We g can easily be applied to disease studies with hundreds of thousands of markers.	
gen 2 Population stratification—allele frequency differences between cases genetic variation. Intuitiv	rely, the axes of variation reduce the data to a
and controls due to systematic ancestry differences—can cause spur- small number of dime	nsions, describing as much variability as
PC. go ious associations in disease studies ¹⁻⁸ . Because the effects of stratifica- possible; they are define tion vary in proportion to the number of samples ⁹ , stratification will matrix between samples	ed as the top eigenvectors of a covariance (see Methods). In data sets with ancestry
	oles, axes of variation often have a geographic ple, an axis describing a northwest-southeast
ogr common genetic variants of weak effect. cline in Europe would ha	ave values that gradually range from positive
	est Europe, to near zero in central Europe, to Europe. Second, we continuously adjust
In a O control and structured association have proven useful in a variety of genotypes and phenoty	pes by amounts attributable to ancestry computing residuals of linear regressions;
cation by adjusting association statistics at each marker by a uniform intuitively, this creates a	virtual set of matched cases and controls.
is meret in the second	sociation statistics using ancestry-adjusted es.
uniform adjustment applied by genomic control may be insufficient at The EIGENSTRAT in	nethod has arisen out of our systematic of principal components analysis in a more
e s populations and may be superfluous at markers devoid of such general population genetic	ic context. Principal components analysis was
ous: uses a program such as STRUCTURE ¹⁵ to assign the samples to genetic variation from	etic data to infer worldwide axes of human the allele frequencies of various popula-
	her developed this approach in a parallel 1 D.R., unpublished data), focusing instead
than one cluster is allowed, the method cannot currently be applied to on individual genotype	data and placing the method on a firm
9. tional cost on large data sets. Furthermore, assignments of individuals each axis of variation ²⁰⁻²²	zorously assigning statistical significance to ² . EIGENSTRAT applies this toolkit to analyze
to clusters are highly sensitive to the number of clusters, which is not population structure in t	the context of disease studies. ation using continuous axes of variation has
We propose a method to detect and correct for population several advantages. Conti	in uous axes provide the most useful descrip-
	t genetic variation, according to recent stu- nuous axes are constructed to be orthogonal,
	the number of axes inferred, as we verify

23 March; accepted 21 June; published online 23 July 2006; doi: 10.1038/n

38 | NUMBER 8 | AUGUST 2006 NATURE GENETIC

EMMAX method overview

- Published in 2010 by the authors of EMMA
- Assumes a complex disease and that all SNP loci have a small effect on the phenotypic trait by themselves
- Instead of re-computing the variance components for every SNP (under the Alternative Hypothesis) computes it once under the Null Hypothesis

• Null Hypothesis: $\sigma_G^2 = 0$;

CHAL WOIL	NIH Public Access
	Author Manuscript
%HEATT	Nat Genet. Author manuscript; available in PMC 2011 May 11.
	Published in final edited form as: Nat Genet. 2010 April ; 42(4): 348–354. doi:10.1038/ng.548.
	Variance component model to account for sample structure in
	genome-wide association studies
	Hyun Min Kang ^{1,2,8} , Jae Hoon Sul ^{3,8} , Susan K Service ⁴ , Noah A Zaitlen ⁵ , Sit-yee Kong ⁴ , Nelson B Freimer ⁴ , Chiara Sabatti ⁶ , and Eleazar Eskin ^{3,7} ¹ Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor,
	Michigan, USA
	² Center for Computational Medicine and Bioinformatics, The University of Michigan Medical School, Ann Arbor, Michigan, USA
	³ Computer Science Department, University of California, Los Angeles, California, USA
	⁴ Center for Neurobehavioral Genetics, University of California, Los Angeles, California, USA
	⁵ Department of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
	⁶ Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California, USA
	⁷ Department of Human Genetics, University of California, Los Angeles, California, USA
	Abstract
	Although genome-wide association studies (GWASs) have identified numerous loci associated with complex traits, imprecise modeling of the genetic relatedness within study samples may cause substantial inflation of test statistics and possibly spurious associations. Variance component approaches, such as efficient mixed-model association (EDMMA), can correct for a wide range of sample structures by explicitly accounting for pairwise relatedness between individuals, using high-density markers to model the phenotype distribution; but such approaches are computationally impractical. We report here a variance component approach implemented in publicly available software, EMMA eXpedited (EMMAX), that reduces the computational time for analyzing large GWAS data sets from years to hours. We apply this method to two human GWAS data sets, performing association analysis for ten quantitative traits from the Northern Finland Birth Cohort and seven common diseases from the Wellcome Trust Case Control Consortium. We find that EMMAX outperforms both principal component analysis and genomic control in correcting for sample structure.
	GWASs may utilize either case-control cohorts to test for associations with diseases or population cohorts to identify associations with quantitative traits. In both cases, it is

MLMM method overview

- "Multiple-Loci Mixed Models"; stepwise EMMAX
- Assumes complex diseases where multiple loci are associated with the phenotype
- Cofactors are selected in a stepwise fashion by choosing the probe with the smallest p-value
- Since EMMAX is used, genetic and error are computed once for each step.
- Genetic and error variances are then re-estimated at for every step

GBLUP method overview

- Best Linear Unbiased Predictor (BLUP) provides residual errors
 - Residual Breeding Values for plant/animal studies
- Estimates of allele substitution effects
- Pseudo-heritability estimate can be used to compare the method with other methods
- Uses a genomic relationship matrix which computes faster than IBS

J. Dairy Sci. 91:4414-4423 doi:10.3168/jds.2007-0980

P. M. VanRaden¹

© American Dairy Science Association, 2008

ABSTRACT

Efficient methods for processing genomic data were

Efficient Methods to Compute Genomic Predictions

Animal Improvement Programs Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350

Implementation and accuracy of genomic selection

Jeremy F. Taylor * Division of Animal Sciences, University of Missouri, Columbia, MO 65211 USs

ARTICLE INFO ABSTRACT

Artick histoy: Received 1 August 2012 Accepted 17 February 2013 Available online xxxx Keywords: Genomic selection Genomic estimated breeding values Single nucleotide polymorphisms Genomic relationship matrix Accuracy

Article history:

Consists which in temerging at a proverful tool for the estimation of tweefing values in plant and animal bending. While many analytical approximation bare bare perspective for the plant estimation of high-density to encoderable polymorphism (SNP) effects, within the framework of best linear unbiased estimation, genomic selection is equivalent to the prediction of breeding values of individual with the pherotype, for which the theoretical solutions was first published in 1974. Commic selection is singly replaces the pedigree derived manetator relationship matrix with the mark-derived realability denomic relationship in marks, and proceed to precisely estimate realised relationship coefficients manne individual with regular bare was and the precisely estimate realised relationship coefficients manne individual with regular bare was and the effects of inling discussion of the united SNP as emission of relationship or deigen information or the history of selection that has been applied to the population. The accuracy of the populations incompositin individual with regular polarity and the selection of the accuracy of the populations incompositin individual with many more individual weight of the formation of security of training and validation population. However, GEW accuracies are stroom here to be a function of the training and validation population. However, GEW accuracies are stroom here to be a function of the training and validation population. However, GEW accuracies are stroom here to be a function of the training and validation population. However, GEW accuracies are stroom here to be a function of the training and validation population. However, GEW accuracies are stroom here to be a function of the training and validation population. However, GEW accuracies are stroom here to be a function of the training and validation population. However, GEW accuracies are stroom here to be a function of the training and validation population. However, GEW accuracies are stroom here to be a function of the train

© 2013 Elsevier B.V. All rights reserved

1. Introduction

Commix exlection (GS) was first proposed by Meuvissen et al. (2001) as a method for the prediction of breeding values of individuals without phenotypes but that had been genotyped with a high-density maker panel. The approach is based upon the simulanneous estimation of allee substitution effects (ASE) for each of the markers using juncar onco-linear Bayesian mode hapding to phenoindividuals comprising a training population, the determination of the accuracy of the derived prediction equations in an independent validation population and application of the prediction equations to generate genomic estimated breeding values (CEBV) in selection candidates within an implementation population. The term training population arises from the like that wore from of models is trained? on genotypes and phenotypes to produce estimates of ASE and CEBV. The purpose of the validation step is to use phenotypes available on an independent set of genotyped individuals to those used in the CEBV that will be generated for the selection candidates. Consequentraining populations simple to form the validation population should be the validation of the validation population should be called the training population of the validation population should accurates of CEBV produced for the validation population should reflect the accuracies of GEBV produced for the selection candidates in the implementation population. Fig. 1 shows the purpose of each of the populations that difference between static and chromosome segments of greater me al., 2001; Schaeffer, 2006). Single nu phism (SNP) markers can now cover high density and are inexpensive to tions based on SNP genotypes can be as DNA can be obtained, which allow exes early in life. Application of gen lairy cattle has just begun (de Roos et Beek, 2007; Guillaume et al., 2008). and strategies were compared by Me Computer algorithms and program ncorporate genomic data into geneti o process the rapidly expanding num vpes. Previous algorithms for includ effects individually rather than additional polygenic effects becau ge of the genome was not yet com 2007). Iterative algorithms such ind preconditioned conjugate gradie stimate allele effects (Legarra and N ewer numerical problems may resu version of variance matrices or mixed Lee and van der Werf, 2006). Geno an be included in multitrait deriv rograms (Zhang et al., 2007)

Objectives of this research were 1 uter methods to include genomic ds b to apply the methods to simulate dolstein and Jersey pedigrees, and 3) n reliability from genomic prediction

MATERIALS AND METH

Predictions were computed by line ystems of equations. The linear pre hat all markers contributed equally

- Have a dataset with inbreeding or some population structure
- Dataset is filtered down to samples and SNPs with:
 - "Good" Call Rate
 - SNP MAF > 0.05 (common variants)
- Whole Genome Sequencing data is fine if looking for common variants
- NOT for RARE VARIANT ANALYSIS!!!!

Regression with PCA	 Homogeneous datasets or datasets with simple structure
EMMAX	•Complex diseases on a structured population, assuming all loci have a small effect on the trait
MLMM	 Complex diseases on a structured population, assuming there are several loci that have a large effect on the trait and the rest have small effects on the trait
GBLUP	 Obtain estimated breeding values, rank allele substitution effects to find QTL or find genomic relationship matrix in structured populations

1	Background of GWASApproaches
2	Review of Select Mixed Model Methods
3	Mixed Models in SVS
4	Demo
5	Compare Results

Mixed Models in SVS

- Derived from the mixmogam python package
- By B. Vilhjalmsson, coauthor of MLMM paper*
- Note, GBLUP also uses utilities from mixmogam

* V. Segura et al. "An efficient multi-locus mixed model approach for genome-wide association studies in structured populations" (Nat Genetics, 2012)

Provides user friendly interface for:

- GBLUP

GOLDEN HELIX SNP & VARIATION SUITE

- Mixed Linear Models Analysis
- Runs directly from a spreadsheet and has an options dialog where you can select your fixed factors and other parameters
- Visualization of results in SVS' Genome Browser is quick and easy
- Optimized so that analyses run fast

1	Background of GWASApproaches
2	Review of Select Mixed Model Methods
3	Mixed Models in SVS
4	Demo
5	Compare Results

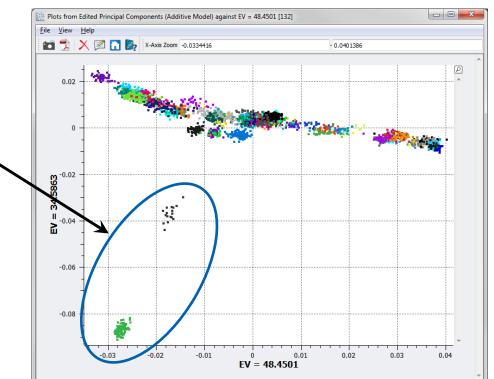
Why Sheep? What about Humans or...?

- The Sheep HapMap dataset was chosen because of
 - the large number of samples and
 - the large number of breeds
- The dataset was available for public use on request from the ISGC
- The dataset was sufficiently structured enough to demonstrate all of the four methods

- Other datasets used by Mixed Model papers include:
 - WTCCC (all diseases including RA and T1D)
 - NFBC66
 - Arabidopsis thaliana dataset
 - Zea maize dataset
 - Various cattle datasets
- Mixed models used on datasets not expected to have family structure (WTCCC and NFBC66)

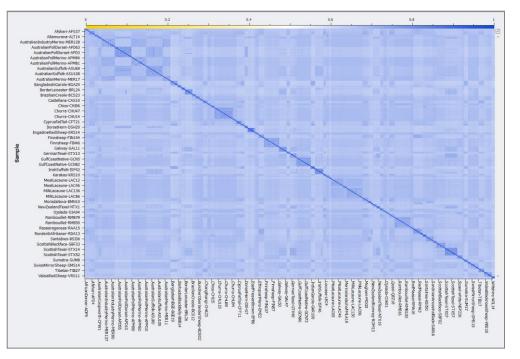
First a little about the dataset...

- Sheep HapMap SNP50_Breedv1 dataset
- Illumina 50k SNP array
- 49,034 markers were left after filtering by the consortium
- 110 unmapped markers
- Only 1 marker in Chr Y

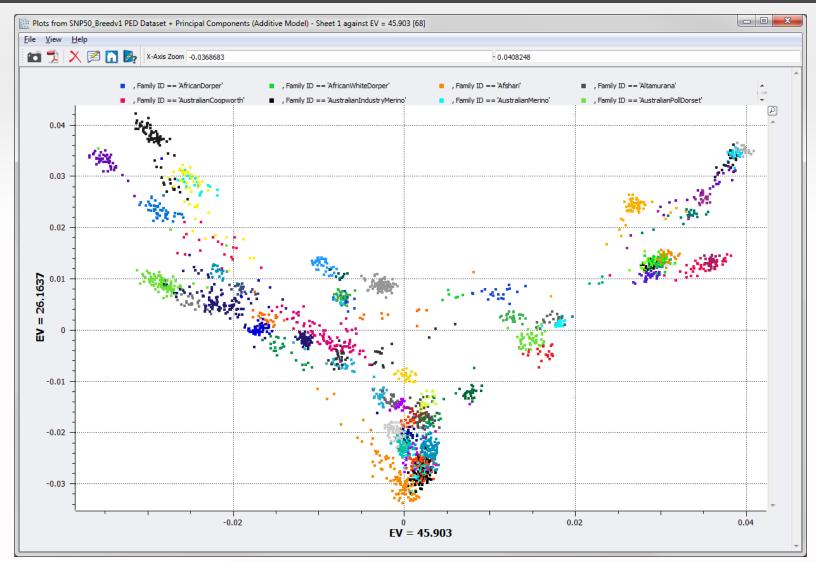


Sample Statistics/Filtering

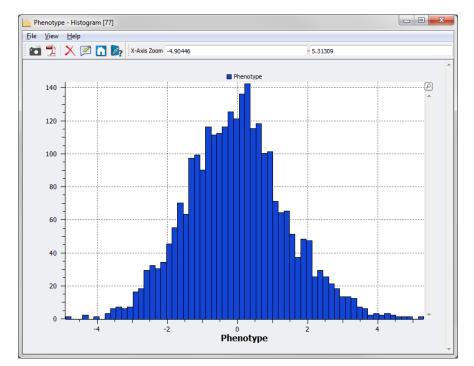
- Removed samples from Boreray & Soay breeds
 - 72 Breeds & Cross-Breeds left
- Imputed gender from heterozygosity rates in the X chromosome
 - Males: 1611
 - Females: 1081



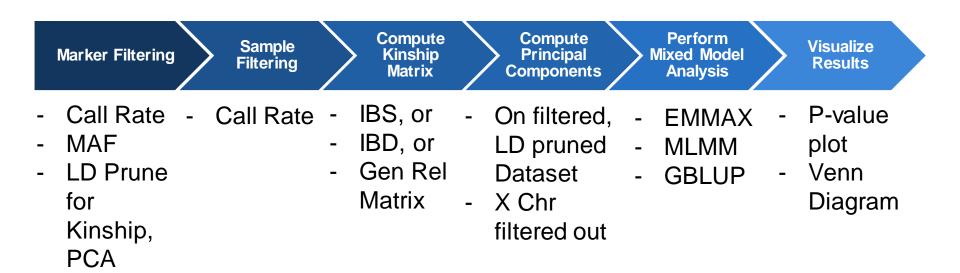
IBS and PCA on Marker Subset


- Filtered down to $MAF \ge 0.05$
- LD pruned
 - $R^2 \ge 0.5$ (CHM method)
 - Window of 50 markers
 - Step size of 5 markers
- Left 45,117 total markers (44,057 autosomal markers)
- Performed IBS & PCA analysis on remaining samples and markers

Sheep HapMap PCA Plot

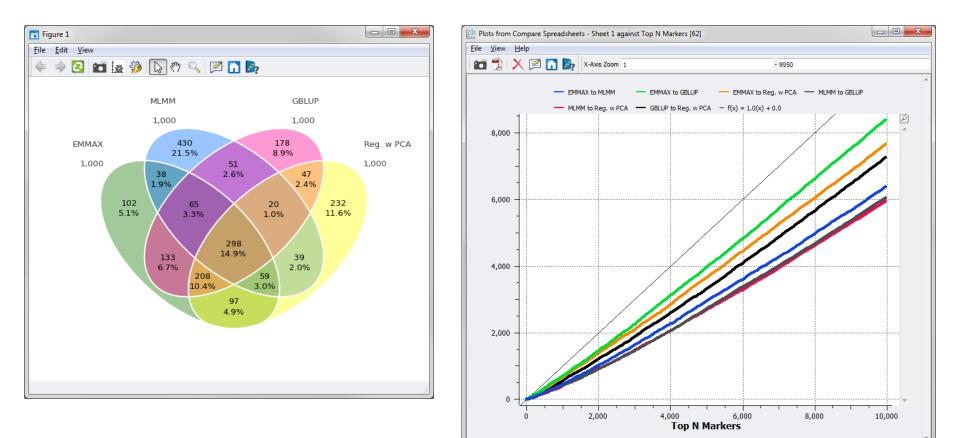


Simulated Phenotype

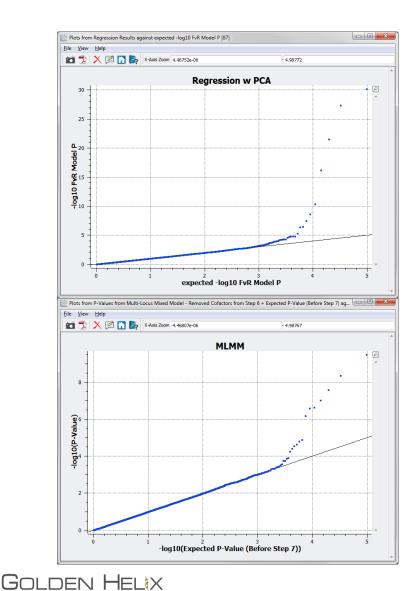

- Filtered markers down to those within predicted gene regions
- Randomly selected 25 causal markers
- Set $h^2 = 0.4$
- Used a χ^2 distribution for the effect sizes
- Added an error adjustment from a skewed normal distribution

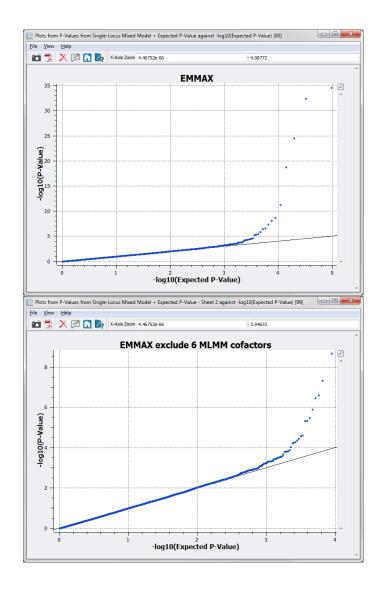
GOLDEN HELIX SNP & VARIATION SUITE

[Demo]

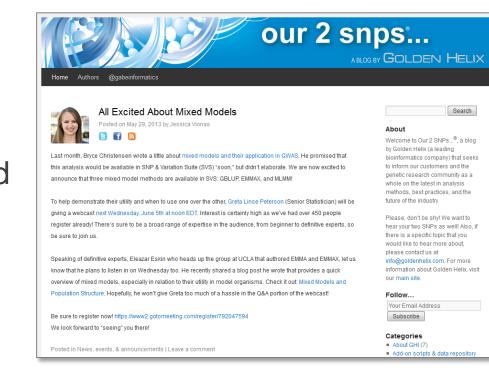


1	Background of GWASApproaches
2	Review of Select Mixed Model Methods
3	Mixed Models in SVS
4	Demo
5	Compare Results


Top 1000 markers show some overlap in results



QQ Plots of methods


Accelerating the Quest for Significance

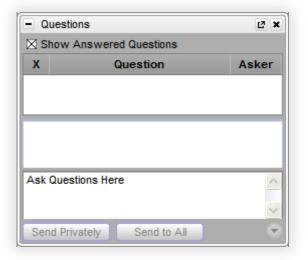
Conclusion

- Mixed models can be a useful tool when applied appropriately.
- Use the method best suited for your data.
- Mixed models are not the "cure all" for bad data.
- Watch for a blog post to come out later this week on more mixed model methods!

- Bjarni Vihjálmsson
- Christopher Seabury
- John McEwan of ISGC

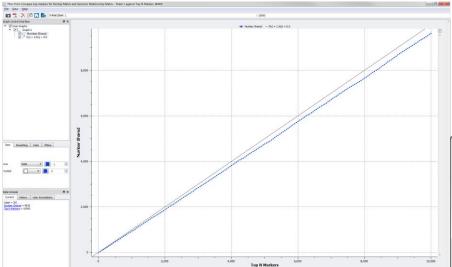
References

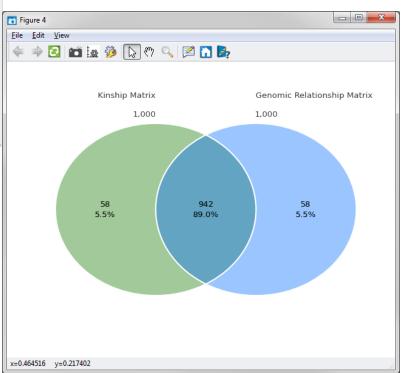
- Kang HM, et al (2008). 'Efficient control of population structure in model organism association mapping', Genetics, 178, 1709–1723.
- Kang HM, et al (2010). 'Variance component model to account for sample structure in genome-wide association studies', Nature Genetics 42, 348–354.
- Patterson N, Price AL, Reich D (2006) Population Structure and Eigenanalysis PLoS Genet 2(12): e190. doi:10.1371/journal.pgen.0020190.
- Segura V, Vihjálmsson BJ, Platt A, Korte A, Seren Ü, et al. (2012) 'An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations', Nature Genetics, 44, 825– 830.
- Taylor, J.F. (2013) 'Implementation and accuracy of genomic selection', Aquaculture, <u>http://dx.doi.org/10.1016/j.aquaculture.2013.02.017</u>
- VanRaden, P.M. (2008) 'Efficient Methods to Compute Genomic Predictions', J. Dairy Sci, 91, pp. 4414–4423.
- Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, Servin B, McCulloch R, Whan V, Gietzen K, Paiva S, Barendse W, Ciani E, Raadsma H, McEwan J, Dalrymple B; International Sheep Genomics Consortium Members. "Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection." PLoS Biol. 2012 Feb;10(2):e1001258. doi: 10.1371/journal.pbio.1001258. Epub 2012 Feb 7



Do You Have Any Questions?

Use the Questions pane in your GoToWebinar window





IBS vs Genomic Relationship Matrix

