

Standardizing ACMG Variant Interpretation Guidelines

Gabe Rudy | VP of Product & Engineering

Golden Helix – Who We Are

Golden Helix is a global bioinformatics company founded in 1998.

Variant Calling Filtering and Annotation Variant Interpretation Clinical Reports CNV Analysis Pipeline: Run Workflows Variant Warehouse

WARE

Variant Warehouse Centralized Annotations Hosted Reports Sharing and Integration CNV Analysis GWAS Genomic Prediction Large-N-Population Studies RNA-Seq Large-N CNV-Analysis

Cited in over 1,200 peer-reviewed publications

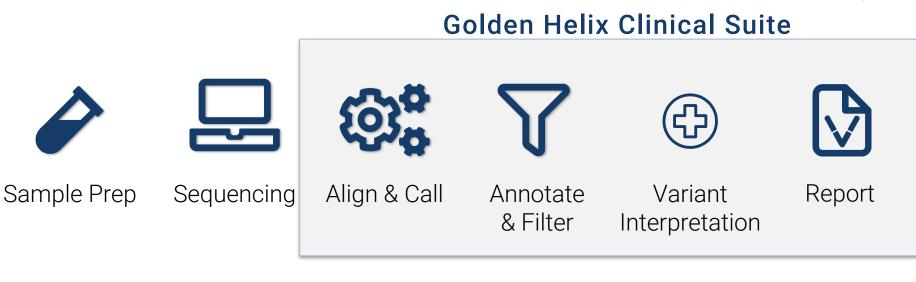
Over 350 customers globally

Golden Helix – Who We Are

When you choose a Golden Helix solution, you get more than just software

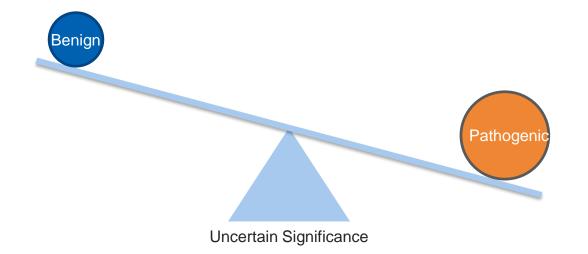
- REPUTATION
- TRUST
- EXPERIENCE

- INDUSTRY FOCUS
- THOUGHT LEADERSHIP
- COMMUNITY


- TRAININGSUPPORT
- RESPONSIVENES
 S

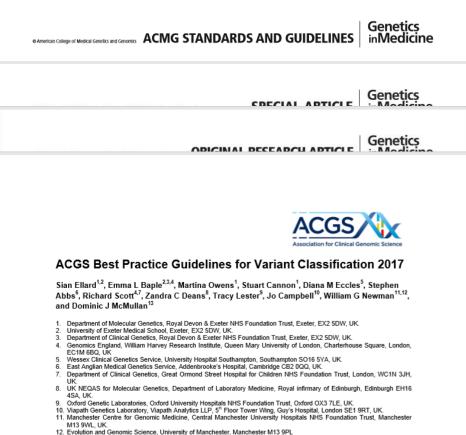
- INNOVATION and SPEED
- CUSTOMIZATIONS

Genetic Testing Process



Variant Interpretation

Evaluation of Evidence:


- Clinical presentation
- Gene function
- Bioinformatic evidence
- Population frequencies

ACMG Guidelines

- A standardized process for scoring variant for genes that cause Mendelian disorders.
- Widely adopted in US, and worldwide
- 33 criteria for evaluating a variants evidence
- Rules for combining criteria into a single Classification
- Not static, follow up papers and expanded recommendations published

West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, B15 2TG, UK.

Recommendations ratified by ACGS Quality Subcommittee on 2nd October 2017

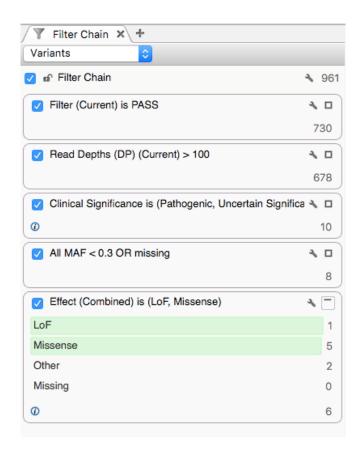
1. Introduction

VSClinical

Complete Support for ACMG Guideline Workflow:

- Implements a guided workflow for following the ACMG guideline scoring and classifying
- Place criteria into conceptually related groups, paired with their opposites, and formatted as answerable question.

Aggregate and Automate:


- Questions have supporting evidence presented with rich and interactive visuals
- Automatically computed recommendations for questions that have explicit bioinformatic evidence, with supporting reasons for each answer.

• Expert and Beginner Friendly:

- Start with descriptive summaries and recommendations for a variant
- Deep dive into Population Catalogs, Gene Impact, Published Studies and Clinical tabs
- Integrated documentation, readings on scoring criteria and citations

Analysis Workflow with VSClinical

- 1. Follow your existing VarSeq annotation and filtering workflow
- 2. Add new ACMG Auto Classifier algorithm:
 - Looks up if variant annotated in previous sample
 - Scores 18 criteria based on available evidence from 7 sources
- 3. Select variants to evaluate using the ACMG Guidelines
- 4. Score and Finalize each variant, selecting which to report
- 5. Finalize the sample, review and report

[Demo in VarSeq]

How Does VSClinical Work?

• 7 Algorithms and 5 Annotation Sources

On the fly computation, thinner projects

Exclusive to VSClinical

- Splice Site Predictions
- Multiple Sequence Alignment (MSA)
- MSA derived GERP++ and phyloP
- MSA derived SIFT and Polyphen2
- ACMG Auto Classifier

New Annotation Sources

- ClinVar Assessments
- Missense Badness

PVS1 Null variant in a gene where LOF is a known mechanism of disease

Null variant types include nonsense, frameshift, canonical ± 1 or 2 splice sites, initiation codon, single or multiexon deletion

Reasons for No:

• The variant is 48nt upstream of the penultimate coding exon junction, which is below the threshold estimated for nonsensemediate decay to destroy the protein product.

• The variant overlaps two other transcripts in which it is not classified as a null variant.

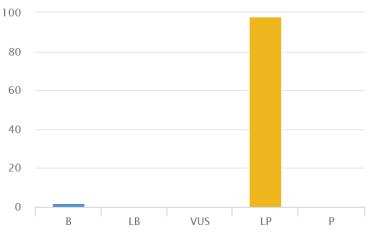
Reasons for Yes:

[•] The gene CFTR has a pLI score of 0.98, which is above the 0.9 threshold to indicate a gene that is intolerate of LoF indications.

Golden Helix Pathogenicity Calculator

ACMG Classification

Probabilistic Model of Pathogenicity:


- Provide instantons feedback
- Per classification probabilities
- Combined pathogenicity probability
- Necessary to classify a variant with conflicting criteria

Probability of Pathogenic given Scored Criteria:

Status: Probability of 0.93 is above 0.90 threshold for Likely Pathogenic

Probability for Each Classification:

Transcript Aware Analysis

- Updated selection of clinically relevant transcript based on ClinVar Assessments
- Your transcript preferences saved and used in VarSeq + VSClinical
- Warning if the the variant overlaps other transcripts that have a different effect

Can switch to view/interpret on any other transcript

Overlapping Transcripts for CDKN2A								\times
Transcript	Used in Interpretations	Effect	HGVS	Length CDS/AA	Exon Position	Protein ID / LRG ID	Coding Status	
NM_058197.4	Internal, ClinVar 2 Cases, 1 Assessment	Frameshift frameshift_variant	c.105dupG _{p.A36Gfs}	351 bp 36 AA	1 of 3 30% of CDS	NP_478104.2	Complete	
NM_001195132.1	Internal, ClinVar 2 Cases, 1 Assessment	Frameshift frameshift_variant	c.105dupG _{p.A36Gfs}	504 bp 36 AA	1 of 4 21% of CDS	NP_001182061.1	Complete	
NM_000077.4 Default for Gene , Has LRG	Internal, ClinVar 2 Cases, 1 Assessment	Frameshift frameshift_variant	c.105dupG p.A36Gfs	471 bp 36 AA	1 of 3 22% of CDS	LRG_11t1 NP_000068.1	Complete Default	
NM_058195.3 Has LRG	Internal, ClinVar 2 Cases, 1 Assessment	Intron intron_variant	c.194-3515dup G	399 bp _{false}	2 of 3 _{false}	LRG_11t2 NP_478102.2	Complete	

Functional Predictions

Functional Predictions: 🕕

Primates Mammals Vertebrates 1.00 (greater than 0.95) MSA-SIFT Damaging 0.909 (greater than 0.446) MSA-PolyPhen2 Damaging 0.94 (less than 1.25) PhyloP Not Conserved 4.23 (greater than 4) GERP++ Conserved

Functional Predictions:

- 100-way multiple-sequence alignment
- Run on Primates, Mammals, Vertebrates

Orangutan

- Algorithms run on-demand for any variant
- Can be run as a bulk annotation algorithm
- Upcoming webcast will cover more

	Multiple Sequence Al	ignment	
	100 Way Multi Species Alignme	nt 🚺	DNA AA
	Human A CTA ACC CTT TCA	GGT CTA AAT GGA GCC CAG ATG GAG AAA	ΑT
	Alt A 32,906,805	T 32,906,84	46
	Chimp A CTA ACC CTT TCA	GGT CTA A <mark>A</mark> T GGA GCC CAG ATG GAG AAA /	AT Î
	Goril A CTA ACC CTT TCA	GGT CTA A <mark>A</mark> T GGA GCC CAG ATG GAG AAA /	AT
	Orang A CT G ACC CTT TCA	GGT CTA AAT GGA ACC CAG ATG GAG AAA	AT
1	Gibbo A CTA ACC CTT TCA	GGT CTA A <mark>A</mark> T GGA A CC CAG ATG GAG AAA /	ΑT
	Rhesu A CTA ACC CTT TCA	GGT CTA A <mark>A</mark> T GGA A CC CAG ATG GAG AAA /	ΑT
	Crab- A CTA ACC CTT TCA	GGT CTA A <mark>A</mark> T GGA A CC CAG ATG GAG AAA /	ΑT
	Baboo A CTA ACC CTT TCA	GGT CTA A <mark>A</mark> T GGA A CC CAG ATG GAG AAA /	AT
	Green A CTA ACC CTT TCA	GGT CTA A <mark>A</mark> T GGA A CC CAG ATG GAG AAA /	ΑT
	Marmo A CTA ACC CTT TC C	GGT CTA C AT GGA A CC CAG ATG GAG A T A A	AT
	Squir	<mark>-</mark>	
	Bushb T CTA ACC CTT TCA	GGT CTA A <mark>G</mark> T GGA A CC CAG ATG GAG AAA /	ΑT
	Chine G CTA A AG A TT TCA	GAA CTG AAT AGA ACC CAG ATA GAG AAA /	AT .

Splice Site Predictions

P

Splice Predictions: ①

Required for ACMG Classification:

- Variants near splice site, synonymous
- 4 algorithmic strategies
- Detect deletion of canonical splice site
- Run in VSClinical and as part of our gene annotation algorithm
- Upcoming webcast to cover more

Multiple Sequence Alignment	
100 Way Multi Species Alignment DNA	A AA
Human GA GCC CTT AAC CTT TTT CAG GTAAAAAAAAAA	
Alt A 47,641,537 T 47,641,582	
Chimp GA GCC CTT AAC CTT TTT CAG GTAAAAAAAAAA	^
Goril GA GCC CTT AAC CTT TTT CAG <mark>GT</mark> AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
Orang GA GCC CTT AAC CTT TTT CAG GTAAAAAAAAAA	- 1
Gibbo GA GCC CTT AAC CTT TTT CAG GTAAAAAAAAAA	
Rhesu GA GCC CTT AAC CTT TTT CAG GTAAAAAAAAAA	
Crab- GA GCC CTT AAC CTT TTT CAG GTAAAAAAAAAA	
Baboo GA GCC CTT AAC CTT TTT CAG GTAAAAAAAAAA	
Green GA GCC CTT AAC CTT TTT CAG GT <mark>A</mark> AAAAAAAAAAAAAAAAAAA	
Marmo GA GCC CTT AAC CTT TT C CAG <mark>GT</mark> AAAAA T AAAAAA T AAAAAAAAAAAAAAAAAAAAA	
Squir	
Bushb GA GCC CTT AAC CTT TT C CAG GT <mark>AAAC</mark> AAAAAACAAAATAATA	
Chine GA GCC CTT AAC CT A TT C CAG <mark>GT</mark> AAAAAAAAAA C AAAAAA-AAAA C A	
	*

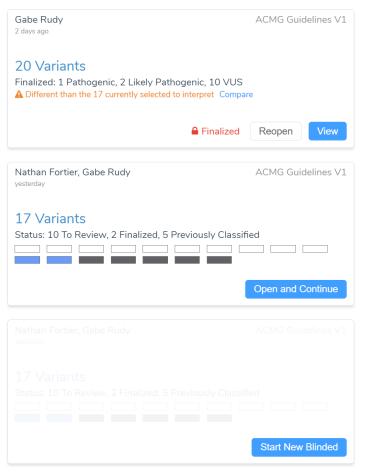
Splice Region Analysis

Tolerated	0000 // // 0.110	
Conserved	4 Splice Region for NM_000059.3 ×	29 Variants: 28 T
Conserved	7. Forward Strand (NM_000059.3):	GRCh37:
Ref Splice Unde tected	Ref TTGTTTATGCATCATGTTTCTTTAGAGCCGATTACCTGTGTACCCTTTCGGTAAGACATGTTTAAATTTTTCTAAATTCTAATACAGTATGAGAAAAG Pos 32,920,983 32,921,080 0, Alt TTGTTTATGCATCATGTTTCTTTAGAGCCGATTACCTGTGTACCCTTTCTGTAAGACATGTTTAAATTTTTCTAAATTCTAATACAGTATGAGAAAAG Pos 32,920,983 32,921,080	chr13: 32,921,03: Genotype: Heterozygous
Disrupted	0. GS Ref GS Alt	dbSNP: rs28897743
Disrupted	MES Ref	Gene:
13 of 27 Ob		Gene: BRCA2
Open Splice Site Analysis on Reg	Reverse Strand: Image: Constraint Constrai	NM_000059.3: c.7007G>T Effect: Missense
e lines of computational evi	Alt CTTTTCTCATACTGTATTAGAATTTAGAAAATTTAAACATGTCTTACAGAAAGGGTACACAGGTAATCGGCTCTAAAGAAACATGATGCATAAACAA id Pos 32,921,080 32,920,983	missense_variant
rt a deleterious effect on the	GS Alt	ACMG Scoring
roduct	MES Ref	Scored Criteria:
nclude in-silico protein function predictions, co		2 criteria currentiy unsco Probability:
eleterious 🔿 All no impact 🧧 U	Image: PWM Ref Image: PWM Alt Image: PWM Alt Image: PWM Alt Image: PWM Alt	56.2% bayesian model prot Classification: Not Classifie
		A Previously classifi

Standardize your Lab with VSClinical

Reduce Subjectivity / Errors

- Supports "Blinded Analysis" of same sample by two lab personnel


Self-learning System

- Knowledge of assessments
- Historical answers for same variant and similar variants in gene help inform decision

Scale up Interpretations

- Self guided exploration of details
- Automate google searchers for variants in papers

ACMG Guidelines based Evaluations of Variants

Thanks to NIH & Stakeholders

NIH Grant Supported

- Research reported in this publication
 was supported by the National Institute
 Of General Medical Sciences of the
 National Institutes of Health under
 Award Number R43GM128485. PI is Dr.
 Andreas Scherer, CEO Golden Helix.
 The content is solely the responsibility
 of the authors and does not necessarily
 represent the official views of the
 National Institutes of Health.
- ACMG Guidelines Author Collaborator:
 - Dr. Elaine Spector (Childrens Colorado, USA)

Stakeholders:

- Dr. Abdallah Elias (Shodair Children's Hospital, USA)
- Dr. Ahmed Alfares, King Abdul Aziz Medical City, Saudi Arabia),
- Dr. Bailey Glen (Medical University of South Carolina, USA)
- Dr. Jim Weber (PreventionGenetics, USA)
- Dr. Qin Hae and Dr. Line Larsen (Amplexa, Denmark)
- Dr. Val Hyland (Pathology Queensland, Australia).

Summary & Next Steps

Contact us to evaluate!

- New Product
- Includes OMIM, CADD, VSReports
- Splice site predictions
- Functional predictions
- Part of upcoming VarSeq 2.0 release
- Shipping Q2, targeting end of May
- Contact us if you are interested in other workflows or customizations

