

FOXO3 Regulates Fetal Hemoglobin Levels in Sickle Cell Anemia

Yankai Zhang, Jacy R. Crosby, Eric Boerwinkle, **Vivien A. Sheehan**

Sickle Cell Anemia

Steinberg MH. N Engl J Med 1999;340:1021-1030 Akinsheye I et al. Blood 2011;118:19-27

Fetal Hemoglobin

Variability of Endogenous HbF

Next Generation Sequencing Methods

Genome-wide association studies (GWAS)

- Identified *BCL11A* as a regulator of endogenous HbF
- BCL11A is unlikely to be a good drug target
- BCL11A variants account for less than half of the observed variability of HbF

Whole exome sequencing (WES)

- Identifies all variants in protein coding regions
- Identifies rare variants with large effects
- Identifies causal variants
- Has not been applied to modifiers of endogenous HbF

WES Study Population

171 pediatric sickle cell anemia patients HbSS Aged 3-18 years

HUSTLE

Hydroxyurea Study of Long-Term Effects n=120

SWITCH

Stroke with Transfusions Changing to Hydroxyurea n=51

T2 Burden Analysis Candidates

Gene	Function	Number of nonsynonymous variants	Beta Value In(%HbF)	P-value
АМРК	AMP-activated protein kinase	2	-1.5	1.5x10 ⁻⁴
NKAIN3	Na/K transport	5	-0.6	2.7x10 ⁻⁴
TNFRSF9	Tumor necrosis factor	5	0.5	3.9x10⁻⁴
FOXO3	Transcriptional activator	7	-0.7	5.6x10 ⁻⁴
EIF2AK1	Heme-regulated inhibitor kinase	7	-0.3	6.9x10 ⁻⁴

Effect of FOXO3 Variants on %HbF

Forkhead box O3

Location of FOXO3 Variants

FUNCTIONAL STUDIES

FOXO3 siRNA knockdown reduces HbF levels in K562 cells

FOXO3 overexpression increases HbF in K562 cells

Primary Erythroid Culture

shRNA knockdown of *FOXO3* reduces HbF in primary erythroid cells

FOXO3 Inducing Agents May Increase HbF Levels

- AMPK activates FOXO3 through phosphorylation
- Variants in AMPK were also associated with lower HbF levels in our WES study
- Metformin, phenformin, and resveratrol increase AMPK expression levels, and may increase γ-globin through FOXO3

Resveratrol Induces γ-Globin in PEP

FOXO3 Accumulates in Nucleus with Resveratrol Treatment

FUTURE DIRECTIONS

Future Plans

Future Analyses

Analyze WES data on a new cohort of 1000 SCD patients to investigate further relationships between *FOXO3* and γ -globin expression.

a. Identify all non-synonymous *FOXO3* gene variants that are associated with reduced HbF levels.

b. Use gene based testing and pathway analysis to determine whether variants in FOXO3 regulatory genes (*AMPK, SIRT1*) are associated with HbF levels.

c. Use nonbiased SNP and gene based testing to identify all variants that segregate with HbF level in the WES cohort.

Future Analyses

Determine the mechanisms by which *FOXO3* regulates γ -globin expression.

a. Analyze primary human erythroid cells by chromatin immunoprecipitationsequencing (ChIP-seq) to determine whether FOXO3 binds the γ -globin locus or other loci that regulate HbF (*BCL11A*, *MYB*, *KLF1*).

b. Analyze primary human erythroid cells with and without FOXO3 knockdown by RNASeq to identify genes altered by FOXO3 knockdown.

c. Use Gene Set Enrichment Analysis (GSEA) to combine WES, ChIP-Seq and RNASeq analyses.

Conclusions

- Burden analysis of WES data identified seven FOXO3 variants associated with lower endogenous HbF in pediatric sickle cell patients.
- In K562 cells and primary erythroid cells, knockdown of *FOXO3* reduced γ-globin levels.
- Overexpression of FOXO3 increased γ-globin levels.
- FOXO3 may be a viable drug target.
- Further work is needed to elucidate the role of FOXO3 in γ -globin regulation

Acknowledgments

Yankai Zhang Jonathan Flanagan

Richard Gibbs

Aniko Sabo Donna Muzny

Betty Pace Biaoru Li

Eric Boerwinkle Jacy Crosby

Cincinnati Children's

Russell Ware Thad Howard Nicole Mortier

Funding NIH NHGRI U54 HG003273 (Richard Gibbs)