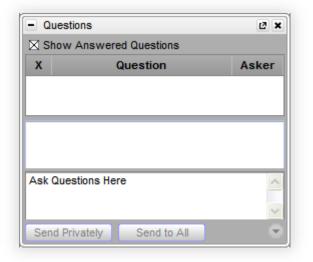


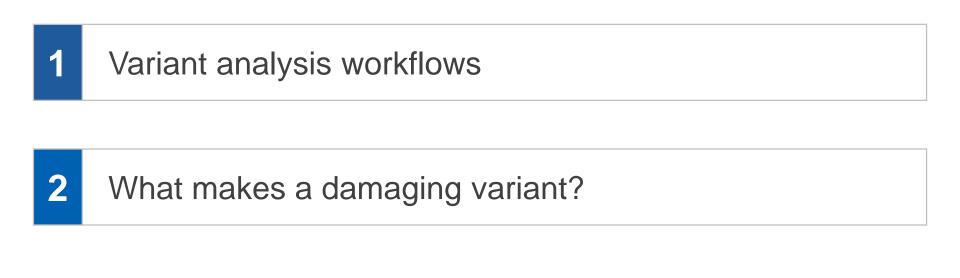
Using VarSeq to Improve Variant Analysis Research

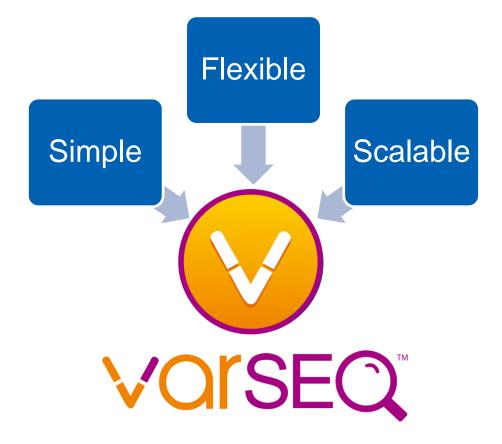
June 10, 2015

G Bryce Christensen Director of Services



Questions during the presentation


Use the Questions pane in your GoToWebinar window



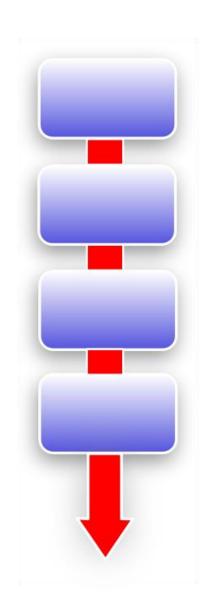
3 QC Considerations

4 VarSeq Interactive Demonstration

- Variant annotation, filtering and ranking
- Repeatable workflows
- Rich visualizations with GenomeBrowse integration
- Powerful GUI and command-line interfaces

- 1. Begin from one or many VCF files
- 2. Annotate variants using public data sources curated by Golden Helix and/or annotate with custom data sources.
- 3. Run additional computation algorithms
 - Allele counts, genotype zygosity, gene list matching, etc
- 4. Construct filter chain to identify candidate variants
 - May use combinations of logical operators in filters
 - May have multiple independent filter chains and/or endpoints
- 5. Process results
 - Gene Ranking with PhoRank
 - Review variant QC
 - Vizualization with GenomeBrowse
 - Commit variants to local database
 - Etc.

- Good variant analysis begins with accurate annotations.
- Golden Helix invests extensive time and effort in validating and maintaining data sources.
- Annotation data sources may be used for either quality control or analytic purposes.


		as annotado	n sources against i	ane imported	Vanantiset			
Loc	ations	Public	Annotations					G
Filter:	*		Variani ▼	Homo sapier	ns (Human), GRCh37 g	g1k (Feb	2 🔻 🔽 Lat	test
Name			*			Size	Date	1
	ClinVa	r 2015-05-04,	NCBI			4.6M	2015-05-12	
	ClinVit	tae 2014-02-0	9, Invitae			2.5M	2014-02-11	
	COSM	IC Mutations	Left Aligned 71	v2, GHI		59M	2015-03-13	
	dbNSF	P Functional	Predictions 2.9,	GHI		435M	2015-04-14	
	dbNSF	P Functional	Predictions and	Scores 2.9, (GHI	6.2G	2015-04-13	
	dbscSN	NV Splice Alt	ering Predictions	2014-11-09	, GHI	220M	2014-09-28	
	dbSNP	137, UCSC				857M	2012-12-10	
	dbSNP	142v2, NCB	I			2.1G	2015-04-20	
	dbSNP	Common 1	37, UCSC			217M	2012-12-10	
dbSNP Common 141, NCBI						554M	2014-09-18	
	dbSNP	Flagged 137	, UCSC			911K	2012-12-10	Ξ
	dbSNP	Flagged 141	, NCBI			243K	2014-09-17	
	dbSNP	Multiple Lo	ci 137, UCSC			53M	2012-12-10	
	ExAC V	/ariant Frequ	encies 0.3, BROA	D		756M	2015-04-07	
	ExAC V	/EP Annotati	ons 0.3, BROAD			827M	2015-04-22	
		ESP6500SI-V	2-SSA137 Exome	s Variant Fre	equencies 0.0.30, GH	I 86M	2015-04-22	
	PolyPh	nen2 dbSNP1	31, UCSC			3.2M	2011-03-28	
	SIFT Pr	rediction for	SNVs 2011-01-10	, JCVI		254M	2011-01-10	
	Superc	entenarian 1	7 Variant Freque	ncies, GHI		112M	2015-03-05	-
•			III				Þ	
🔻 Inf	ormation				showing (23/378), 0 s	elected	(0 bytes) Cle	ear
ExA	C VEP /	Annotatio	ns 0.3, BROA	١D				-
Desc	ription							
		areastion C	onsortium (EvA(C) annrenat	es and summarizes	exome	9	
	_				cing projects. The d			

Defining Deleteriousness

What makes a variant potentially damaging?

- Start by defining the search space:
 - Rare, non-synonymous, homozygous variants?
 - DeNovo mutations in highly conserved genes?
 - Splice-site mutations?
 - Etc.
- Review annotations for remaining variants to identify causal candidates
- Which annotations to use?

Variant Classification

Category		Count	Percent
3_prime_UTR_variant	47.81%	10282	47.81%
missense_variant	19.29%	4149	19.29%
intergenic_variant	11.52%	2477	11.52%
synonymous_variant	11.35%	2442	11.35%
5_prime_UTR_variant	4.44	955	4.44%
splice_region_variant	1.7 8%	383	1.78%
intron_variant	1.50%	336	1.56%
frameshift_variant	0.83%	115	0.53%
stop_gained	0.83%	113	0.53%
splice_donor_variant	0.40%	87	0.40%
disruptive_inframe_deletion	0.22%	47	0.22%
splice_acceptor_variant	0,15%	33	0.15%
5_prime_UTR_premature_start_codon_gain_variant	0,13%	28	0.13%
disruptive_inframe_insertion	0,11%	23	0.11%
inframe_deletion	0.07%	14	0.07%
inframe_insertion	0.05%	11	0.05%
stop_retained_variant	0.03%	7	0.03%
stop_lost	0.01%	3	0.01%
initiator_codon_variant	0.01%	2	0.01%
non_coding_exon_variant	0.00%	0	0.00%
Total	0.00% 9.58% 19.1% 28.7% 38.2% 47.8%	21507	100.0%

- VarSeq classifies variants into 20+ different categories
- The categories are further grouped as:
 - Loss of Function
 - Missense
 - Other
- Choice of gene transcript reference
 - RefSeq
 - Ensembl
 - Others

- ClinVar is a public archive of variants evaluated for potential causal relationships to diseases
- Submissions from many sources, including major clinical laboratories
- Over 100k records
- Updated monthly

Category Counts (123 Records from a Dataset Total of 98,655)

Category				Count	Percent
Benign		57.14%		84	57.14%
Likely Benign	23.13%			34	23.13%
Pathogenic	6.80%			10	6.80%
Uncertain Significance	6.12%			9	6.12%
other	4.08%			6	4.08%
Not Provided	1.36%			2	1.36%
Likely Pathogenic	1.30%			2	1.36%
Drug Response	0 .00%			0	0.00%
Total	0.00% 11.4% 22.	9% 34.3% 45.7% 57	7.1%	147	100.0%

Category Counts (123 Records from a Dataset Total of 98,655)

Category		Count	Percent
(1 Star) Classified by single submitter	84.35%	124	84.35%
(2 Stars) Classified by multiple submitters	12.93%	19	12.93%
(0 Stars) Not classified by submitter	1. en	2	1.36%
(3 Stars) Reviewed by expert panel	1. cos	2	1.36%
Total	0.00% 18.9% 33.7% 50.8% 87.5% 84.4%	147	100.0%

 Functional predictions use algorithms to determine the expected consequence of variants (or the resulting amino acid substitutions).

dbNSFP

- The Database for NonSynonymous Functional Predictions (dbNSFP) is a free tool developed by Dr. Xiaoming Liu.
- Catalogs pre-computed conservation and functional prediction scores for all possible missense SNVs in the genome
- Methods include SIFT, PolyPhen-2, MutationTaster, MutationAssessor, FATHMM, more

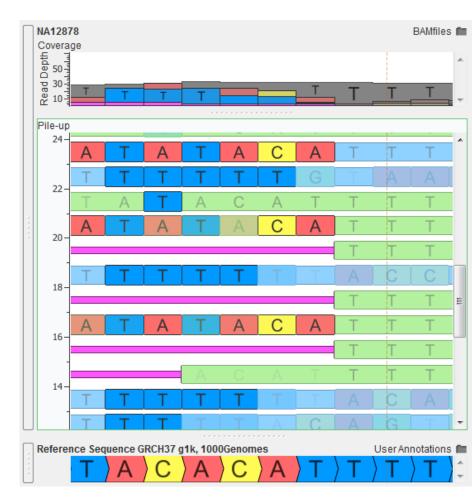
dbscSNV

- Companion to dbNSFP that scores variants in splice consensus regions
- Variants in these regions may disrupt normal gene expression and/or function
- dbNSFP and dbscSNV are both accessible in VarSeq

- PhoRank algorithm in VarSeq uses HPO and GO terminology to score relationships between genes and phenotypes
- Very useful to prioritize a long list of variants for individual review
- Based on PHEVOR method.

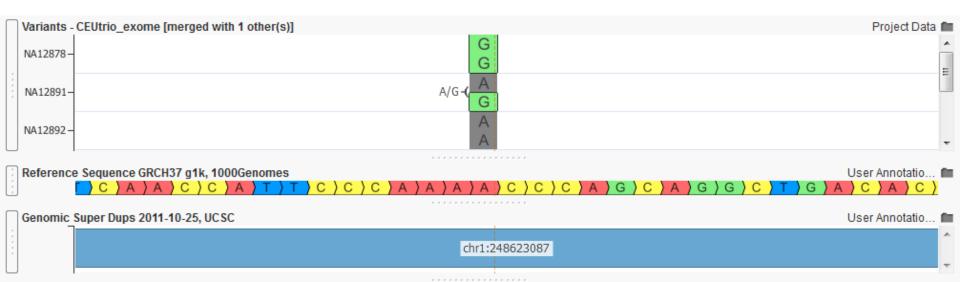
-								
/	115 Variants) Compound Heterozygous: NA12878 🛛 X 🖉 (50 Genes) Compound Heterozygous: NA12878 🛛 X 🕂							
	🙀 Add 🔊 🔷 🚰 Export 🧟 🛱 Compound Heterozygous: NA12878 🖬							
Group by Genes Compound Het Genes for Proband (NA12878)					PhoRank for Proband (NA12878)			
	Gene Names	Has Compound Het?	Inherited from Father	Inherited from Mother	Gene Rank	Gene Score	Path	
>	MYH9	True	1	1	0.998117	0.000373794	MYH9, HP:0001626 (Abnormality of the cardiovascular system)	
	HLA-DRB1	True	1	5	0.996234	0.000341388	HLA-DRB1, HP:0001626 (Abnormality of the cardiovascular system)	
	SYNE2	True	1	1	0.984934	0.000303223	SYNE2, HP:0001626 (Abnormality of the cardiovascular system)	
	SYNE1	True	1	3	0.984934	0.000303223	SYNE1, HP:0001626 (Abnormality of the cardiovascular system)	
	KMT2D	True	1	1	0.984934	0.000303223	KMT2D, HP:0001626 (Abnormality of the cardiovascular system)	
	IFIH1	True	1	1	0.984934	0.000303223	IFIH1, HP:0001626 (Abnormality of the cardiovascular system)	
	ZNF614	True	1	1	0.828625	0.000129002	ZNF614, GO:0005575 (cellular_component), AMMECR1, HP:0001626 (Abnorm	
	PTCHD3	True	1	1	0.828625	0.000129002	PTCHD3, GO:0005575 (cellular_component), AMMECR1, HP:0001626 (Abnorm	
	MYBPHL	True	1	1	0.828625	0.000129002	MYBPHL, GO:0005575 (cellular_component), AMMECR1, HP:0001626 (Abnorm	
	TENC1	True	2	1	0.822976	7.07923e-005	TENC1, GO:0005886 (plasma membrane), ABCA1, HP:0001626 (Abnormality o	
	TECTA	True	1	1	0.822976	7.07923e-005	TECTA, GO:0005886 (plasma membrane), ABCA1, HP:0001626 (Abnormality o	
	PLXNA1	True	1	1	0.822976	7.07923e-005	PLXNA1, GO:0005886 (plasma membrane), ABCA1, HP:0001626 (Abnormality	
	PLB1	True	1	1	0.822976	7.07923e-005	PLB1, GO:0005886 (plasma membrane), ABCA1, HP:0001626 (Abnormality of t	

QC Considerations



- Variant QC
- Rare variants deserve special attention
- VCF/BAM Data:
 - Depth DP
 - Quality GQ
 - Strand bias
 - Etc.
- Public Annotations:
 - "Mappability"

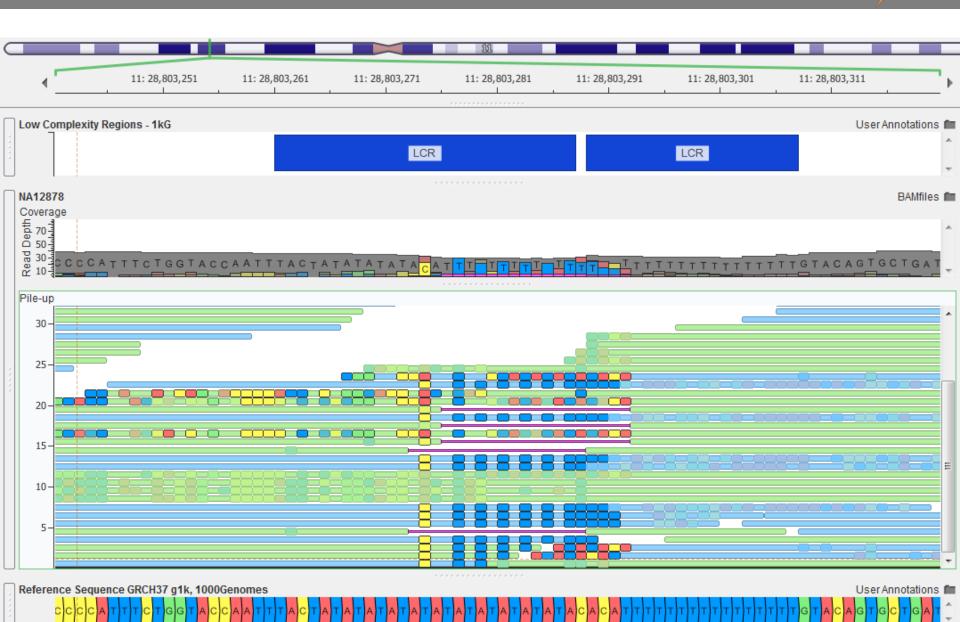
Mappability Annotations

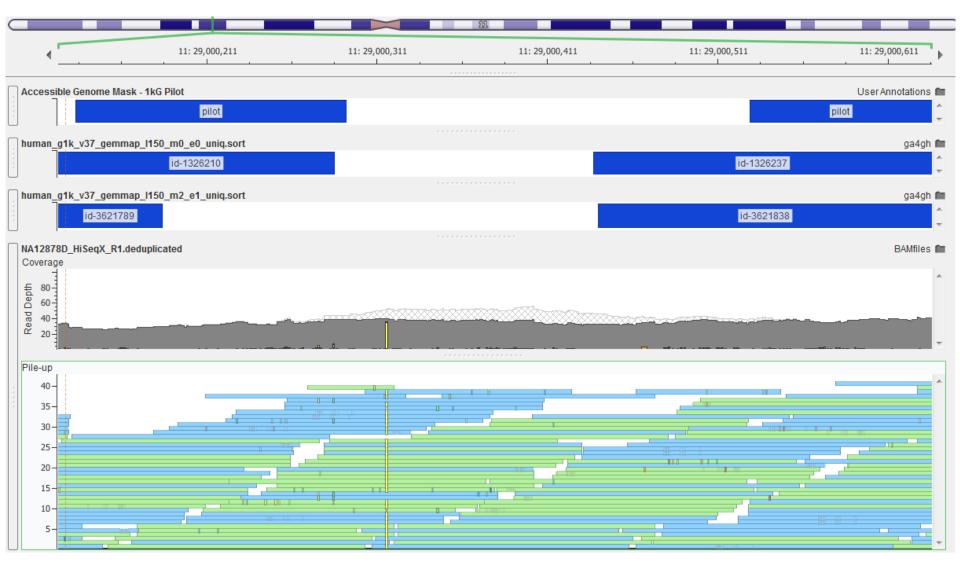

- The human reference genome has assembly gaps and other "difficult" regions
- NGS technology sequences short DNA fragments which are the aligned to the reference genome
 - Most sequences are aligned correctly
 - Some sequences can't be aligned uniquely
 - Some sequences may be incorrectly aligned
- Luckily, we can predict many of the trouble spots

Segmental Duplications

- Segmental duplications are a common confounder
- UCSC "Genomic Super Dups" annotation available through VarSeq
- Recent Example (below):
 - Apparent UPD feature in family trio was determined to be an artifact of seg. duplication
 - Large chromosome segment duplicated elsewhere with >98% similarity

Emerging Standards


- Several organizations working on best practices guidelines for genome mappability
 - 1000 Genomes Project
 - Genome in a Bottle Consortium
 - Global Alliance for Genomics and Health (GA4GH)
 - National Institute of Standards and Technology
- Downloadable annotations available for many types of features:
 - Mappability by read length
 - High G-C content regions
 - Low complexity
 - Segmental duplications
 - Etc.



Example: 1kG Low Complexity Regions

Example: GA4GH 150-bp Mappability

- Exome sequencing of five individuals from family with familial cardiac conduction disease (CCD)
- Raw sequence data obtained from SRA

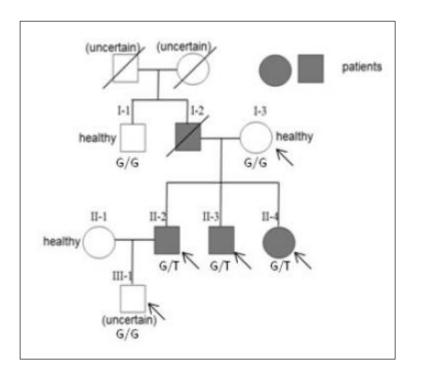
OPEN OACCESS Freely available online

PLOS ONE

Whole-Exome Sequencing to Identify a Novel LMNA Gene Mutation Associated with Inherited Cardiac Conduction Disease

Chun-Chi Lai^{1®}, Yung-Hsin Yeh^{2®}, Wen-Ping Hsieh³, Chi-Tai Kuo², Wen-Ching Wang^{4,5}, Chia-Han Chu⁵, Chiu-Lien Hung^{4,5}, Chia-Yang Cheng^{1,5}, Hsin-Yi Tsai², Jia-Lin Lee⁴, Chuan-Yi Tang¹, Lung-An Hsu^{2*}

1 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, 2 First Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan, 3 Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan, 4 Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing-Hua University, Hsinchu, Taiwan, 5 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 6 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, 7 Biomedical Science and Psice Actional Sc


1

PLOS ONE | www.plosone.org

December 2013 | Volume 8 | Issue 12 | e83322

- Male-to-male transmission makes Xlinked model unlikely
- May follow dominant or recessive transmission
- Inherited forms of CCD are rare
- Family has East Asian ancestry

[Demonstration]

- Variant annotation, filtering and ranking
- Exploratory analysis
- Powerful GUI with immediate feedback
- Rich visualizations with GenomeBrowse integration

Questions or more info:

- Email info@goldenhelix.com
- Request an evaluation of the software at <u>www.goldenhelix.com</u>

Questions?

Use the Questions pane in your GoToWebinar window

 Questi 	ons	12 ×
Show	Answered Questions	
х	Question	Asker
Ask Ques	tions Here	~
		<u>×</u>

