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Introduction - Catfish

e Catfish can survive in a wide range of freshwater habitats such as
lakes, rivers, and streams.

e Channel catfish, blue -catfish, black bullhead, brown bullhead,
flathead catfish, white catfish, yellow bullhead

e Catfish industry is the largest aquaculture industry in the United
States, accounting for over 50% of all US aquaculture production.




Introduction - Catfish
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Introduction - ESC

e Wide distribution: in all catfish producing areas in the world, and
in the US, mostly Mississippi, Alabama, Arkansas, and Louisiana

e Huge losses: S40-60 million annually

Transmission electron micrograph Symptoms including hole in the head
Edwardsiella ictaluri



Introduction - GWAS

e GWAS can link genotype and phenotype, which examines a genome-wide set

of genetic variants in individuals to find variants that associate with a

_ Causative
phenotype of interest. mutation

e GWAS is based upon the principle of linkage l Many generations

disequilibrium (LD) which is the nonrandom

association between alleles at different loci.

(Zhu et al. 2008)



Introduction - GWAS

Common disease/common variant hypothesis
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Introduction - GWAS
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Introduction - GWAS

Advantages:
* The association mapping has high resolution.

* No pedigree information required

Disadvantages:

* Expensive

* Genotyping error

Population
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* Susceptible to population stratification

Balding 2006



Objectives

» |dentification of quantitative trait locus (QTL) and SNPs associated with

ESC resistance at species level

» |dentification of potential candidate genes and pathways controlling ESC

resistance



Resources Required for GWAS in this study

v Catfish population

v Development of the catfish 690K SNP array (Zeng et al., 2017)

v Powerful statistical tools: SVS software packages, PLINK, etc.
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Flowchart

Catfish challenge experiment

Sample collection and DNA isolation

Genotyping

Quality control

Statistical analysis

Candidate genes/pathway analysis



Experiment design

[9 Channel catfish —l— & Blue catfish J
[9 Channel catfish J F1 hybrid fish }

Selective genotyping
_ 288 phenotypic extremes in
[B“kcmss p'°ge"'es} three 690k catfish SNP arrays

Family ID Sample number | Susceptible Resistant
sample number sample number

_ Channel 1 Hybrid 1

Channel 2 Hybrid 2

E Channel 3 Hybrid 3 70 36 34
W Channel 4 Hybrid 4 77 36 41




Quality control and LD pruning

* Sample quality control
No sample with genotype missingness > 5%
* SNP quality control
Excluded SNPs with a minor allele frequency (MAF) < 0.05 or a call rate < 95%

* LD pruning was conducted to achieve a set of independent SNPs and LD
blocks.

* LD pruning is a good practice prior to IBS analysis and PCA analysis which
may be biased by large blocks of redundant SNPs.



PCA analysis

* Each dot represents
one individual.

e Each family was
grouped into a
separate cluster.
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Statistical analysis (EMMAX and QFAM)

« EMMAX (Efficient Mixed-Model Association eXpedited) analyses
Y=XB+Zu+e

Where Y is the vector of phenotype; B is the coefficient vector of fixed effects including first
three principle components and fish body weight; u is the vector of the random effect, Var(u) =
Gogz, where ogz is the additive genetic variance and G is the genomic kinship matrix using the IBS;
e is the vector of random residuals; X is the matrix of fixed effects and Z is the matrix of random
additive genetic effects.

 QFAM (Family based association test for quantitative traits)
Vi = L+ Bpb; + B,w;

QFAM partitions the genotypes into between-family (b) and within-family (w) components. The
within-family analysis used in this study is robust to population stratification, which assesses
transmission of alleles within a family, but without making use of allelic association observed
across families.



Results - Manhattan plot
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Results - SNP

Examination of the associated SNPs reveals superior blue catfish alleles responsible

for strong resistance against ESC.

1. the interspecific SNPs on LG1

Example SNP
Channel catfish:
ATATTTATGCAGAAAACAACAAAGCAGAAGTCCTGCCCAAGATGACATTCAGCTTTACTTCTCACTAACCA

Blue catfish:
ATATTTATGCAGAAAACAACAAAGCAGAAGTCCTGACCAAGATGACATTCAGCTTTACTTCTCACTAACCA

2. channel catfish-specific SNPs on LG23

Example SNP
Channel catfish:
CACATACAACAGAGATAAAACAAATGAGCTTTTACAGATGGGTATATAACACAGGCATGGGCTATGGAGCC

Channel catfish:
CACATACAACAGAGATAAAACAAATGAGCTTTTACGGATGGGTATATAACACAGGCATGGGCTATGGAGCC



Results - Gene
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Results - Gene
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Results - Function

Linkage group |Gene _|Location(bp)  |Function |
nckl 32,352,283-32,413,183  actin filament organization

Phagocytosis

T cell activation

B cell receptor signaling

agtrl 32,480,471-32,494,698 regulation of inflammatory response
trpcl 33,472,942-33,504,891 calcium ion transport
B cell receptor signaling
abil 33,560,300-33,609,297  actin polymerization or depolymerization
Phagocytosis
apbblip 33,632,904-33,677,852 T cell activation
actr3b 34,277,661-34,297,129  actin nucleation
Phagocytosis
vav3 34,542,282-34,629,025 Phagocytosis
B cell receptor signaling
mrcll 7,943,812-7,946,175 cellular response to lipopolysaccharide
endocytosis
T cell activation

prkcq 7,954,997-7,964,953 inflammatory response
T cell activation
gata3 8,239,408-8,259,340 inflammatory response

T cell differentiation
humoral immune response




Results
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Conclusions

1. Two significantly associated QTL for ESC resistance were identified on LG1 and LG23.

2. The significant QTL on LG1 is consistent with the finding of previous studies (Zhou
et al. 2017), reflecting the power of GWAS.

3. Examination of the associated SNPs revealed superior blue catfish alleles

responsible for strong resistance against ESC.

4. The candidate genes were found to be involved in the pathways of phagocytosis

and T-cell activation.

5. The positionally related immune genes were functionally related in similar

pathways.
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