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Introduction - Catfish

 Catfish can survive in a wide range of freshwater habitats such as

lakes, rivers, and streams.

 Channel catfish, blue catfish, black bullhead, brown bullhead,

flathead catfish, white catfish, yellow bullhead

 Catfish industry is the largest aquaculture industry in the United

States, accounting for over 50% of all US aquaculture production.



Introduction - Catfish

 increased feed and fuel costs

 international competition

 devastating diseases
Source: http://www.agecon.msstate.edu/whatwedo/budgets/docs/catfish2014.pdf



 Wide distribution: in all catfish producing areas in the world, and

in the US, mostly Mississippi, Alabama, Arkansas, and Louisiana

 Huge losses: $40-60 million annually

Transmission electron micrograph 
Edwardsiella ictaluri

Symptoms including hole in the head

Introduction - ESC



 GWAS can link genotype and phenotype, which examines a genome-wide set

of genetic variants in individuals to find variants that associate with a

phenotype of interest.

 GWAS is based upon the principle of linkage

disequilibrium (LD) which is the nonrandom

association between alleles at different loci.

Introduction - GWAS

(Zhu et al. 2008)

Causative 
mutation

Many generations



Introduction - GWAS

McCarthy et al. 2008

Common disease/common variant hypothesis



Introduction - GWAS

Pace of GWAS publications since 2005
(Manolio 2013)

The first successful GWAS was
reported in 2005. (Klein et al.)

96 cases
50 controls

Found a common intron
variant associated with age-
related macular degeneration



Advantages:

• The association mapping has high resolution.

• No pedigree information required

Disadvantages:

• Expensive

• Genotyping error

• Susceptible to population stratification

Introduction - GWAS

Balding  2006



Objectives

➢ Identification of quantitative trait locus (QTL) and SNPs associated with

ESC resistance at species level

➢ Identification of potential candidate genes and pathways controlling ESC

resistance



✓Catfish population

✓Development of the catfish 690K SNP array (Zeng et al., 2017)

✓Powerful statistical tools: SVS software packages, PLINK, etc. 

Resources Required for GWAS in this study



Catfish challenge experiment

Sample collection and DNA isolation

Genotyping

Candidate genes/pathway analysis

Statistical analysis

Quality control

Flowchart



Family ID Dam Sire Sample number Susceptible
sample number

Resistant
sample number

1 Channel 1 Hybrid 1 71 36 35
2 Channel 2 Hybrid 2 70 34 36
3 Channel 3 Hybrid 3 70 36 34
4 Channel 4 Hybrid 4 77 36 41

Experiment design

Selective genotyping
288 phenotypic extremes in 
three 690k catfish SNP arrays



• Sample quality control

No sample with genotype missingness > 5%

• SNP quality control

Excluded SNPs with a minor allele frequency (MAF) < 0.05 or a call rate < 95%

• LD pruning was conducted to achieve a set of independent SNPs and LD
blocks.

• LD pruning is a good practice prior to IBS analysis and PCA analysis which
may be biased by large blocks of redundant SNPs.

Quality control and LD pruning



• Each dot represents 

one individual.

• Each family was 
grouped into a 
separate cluster.

PCA analysis



• EMMAX (Efficient Mixed-Model Association eXpedited) analyses

Y = Xβ + Zu + e

Where Y is the vector of phenotype; β is the coefficient vector of fixed effects including first
three principle components and fish body weight; u is the vector of the random effect, Var(u) =
Gσg

2, where σg
2 is the additive genetic variance and G is the genomic kinship matrix using the IBS;

e is the vector of random residuals; X is the matrix of fixed effects and Z is the matrix of random
additive genetic effects.

QFAM partitions the genotypes into between-family (b) and within-family (w) components. The
within-family analysis used in this study is robust to population stratification, which assesses
transmission of alleles within a family, but without making use of allelic association observed
across families.

• QFAM (Family based association test for quantitative traits)

ŷij = μ + βbbi + βwwij

Statistical analysis (EMMAX and QFAM)



EMMAX result

QFAM result

Results - Manhattan plot



Results - SNP 

Examination of the associated SNPs reveals superior blue catfish alleles responsible

for strong resistance against ESC.

Example SNP
Channel catfish: 
ATATTTATGCAGAAAACAACAAAGCAGAAGTCCTGCCCAAGATGACATTCAGCTTTACTTCTCACTAACCA
Blue catfish: 
ATATTTATGCAGAAAACAACAAAGCAGAAGTCCTGACCAAGATGACATTCAGCTTTACTTCTCACTAACCA

1. the interspecific SNPs on LG1

2. channel catfish-specific SNPs on LG23

Example SNP
Channel catfish: 
CACATACAACAGAGATAAAACAAATGAGCTTTTACAGATGGGTATATAACACAGGCATGGGCTATGGAGCC
Channel catfish: 
CACATACAACAGAGATAAAACAAATGAGCTTTTACGGATGGGTATATAACACAGGCATGGGCTATGGAGCC



Results - Gene 



Results - Gene 



Results - Function

Linkage group Gene Location (bp) Function

1 nck1 32,352,283-32,413,183 actin filament organization
Phagocytosis
T cell activation
B cell receptor signaling

agtr1 32,480,471-32,494,698 regulation of inflammatory response
trpc1 33,472,942-33,504,891 calcium ion transport

B cell receptor signaling

abi1 33,560,300-33,609,297 actin polymerization or depolymerization
Phagocytosis

apbb1ip 33,632,904-33,677,852 T cell activation
actr3b 34,277,661-34,297,129 actin nucleation

Phagocytosis
vav3 34,542,282-34,629,025 Phagocytosis

B cell receptor signaling

23 mrc1l 7,943,812-7,946,175 cellular response to lipopolysaccharide
endocytosis
T cell activation

prkcq 7,954,997-7,964,953 inflammatory response
T cell activation

gata3 8,239,408-8,259,340 inflammatory response
T cell differentiation
humoral immune response



Phagocytosis

Results - Involved pathway

T-cell activation



1. Two significantly associated QTL for ESC resistance were identified on LG1 and LG23.

2. The significant QTL on LG1 is consistent with the finding of previous studies (Zhou

et al. 2017), reflecting the power of GWAS.

3. Examination of the associated SNPs revealed superior blue catfish alleles

responsible for strong resistance against ESC.

4. The candidate genes were found to be involved in the pathways of phagocytosis

and T-cell activation.

5. The positionally related immune genes were functionally related in similar

pathways.

Conclusions
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