ESTIMATION AND CHARACTERIZATION OF THE SNP-HERITABILITY OF ALCOHOL DEPENDENCE IN SUBJECTS OF EUROPEAN AND AFRICAN ANCESTRY

RHC Palmer, PhD LA Brick, JE McGeary, VS Knopik, MC Keller RIH | Division for Behavioral Genetics Brown University | Department of Psychiatry and Human Behavior







# **Outline of Presentation**

- Consequences & mechanisms of alcohol harm
- Approach for genomewide comparison of effects across ancestral populations.
- Summary of findings



## Alcohol Misuse – A Global Issue

- Regular alcohol consumption is a risk factor for increased mortality.
  - In 2012, 3.3M deaths were attributable to alcohol consumption.
  - It is the 4<sup>th</sup> leading cause of death in USA.



# **Mechanisms of Harm**

- There are three direct mechanisms of alcohol harm:
  - 1. Toxic effects on organs and tissues;
  - **2. Intoxication**, leading to impairment of physical coordination, consciousness, cognition, perception, affect or behavior;
  - **3. Dependence**, whereby the drinker's self-control over his or her drinking behavior is impaired.

# **Definition of Alcohol Dependence**

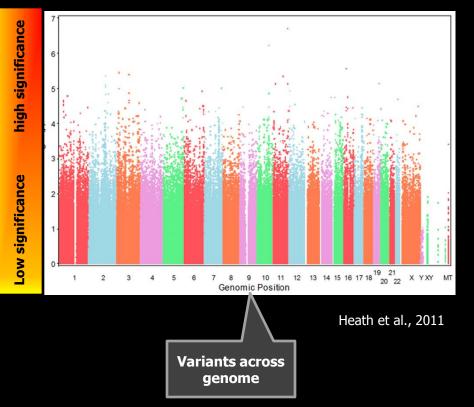
- A maladaptive pattern of alcohol abuse leading to clinically significant impairment or distress as described by these seven symptoms:
- DSM-IV criteria
- 3+ (within 12 months)
  - Tolerance
  - Withdrawal
  - Drinking longer than intended
  - Failure to quit drinking
  - Much time spent using/recovering from alcohol
  - Social/occupational activities foregone
  - Drinking despite physiological/psychological problems

## **Genetics of Alcohol Dependence**

- Alcohol dependence runs in families.
- Genetic differences between individuals account for ~50% of the risk for alcohol dependence.
  - Genetic difference can increase or decrease a person's risk.
  - No such thing as an "alcoholism gene".
- Familial, psychological, and sociocultural factors are also very important.

### **Causes of Disease**

#### Monogenic diseases


- Strongly influenced by variation in a single gene.
- Classic patterns of inheritance within families.
  - Inheritance conforms to Mendelian principles.
  - Occurrence is rare.
- Genetic variants typically have large effects, altering/reducing function or stability of proteins(s).
- E.g., PKU or HD

#### **Complex diseases**

- Strongly influenced by variation within multiple genes; can be caused variation in a gene.
- Do not have predictable patterns of inheritance
- Spectrum of genetic effects is broad impacting proteins directly and directly; effect sizes are small.

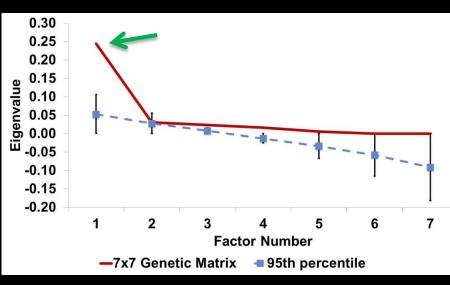
# **Alcoholism Is A Complex Disease**

# GWAS suggests many variants of small effect.



#### Many genes\* linked to AD

- ALDH2(aldehyde dehydrogenase), ADH1B, ADH1C, ADH4,
- CHRM2, nACHRs A3A5B4
- OPRK1, OPRM1 (opioid), PDYN
- 5-HTTLPR
- NMDAR1, NMDAR2B
- GABA-A: a2, β1, β3, γ3
- GABA-B
- *MAO-A, MAO-C,DβH, COMT*
- DAT (SLC6A3), DRD2, DRD4


GRIK1 (glutamate)

\* - listed genes have both positive and negative association findings, and should be carefully interpreted.

## **Common Variants Influence Alcoholism**

#### SNP heritability (h<sup>2</sup><sub>SNP</sub>; s.e.) of AD Current Study Phenotype $h_{SNP}^2$ (s.e.) **AD Diagnosis** 0.300 (0.136)<sup>a</sup> 0.307 (0.130)<sup>a</sup> **AD** factor score **DSM-IV AD Symptoms** Sx 1: Tolerance 0.242 (0.129)<sup>a</sup> Sx 2: Withdrawal 0.281 (0.174) Sx 3: Using longer than intended 0.324 (0.158)<sup>a</sup> Sx 4: Failure to quit 0.197 (0.146) Sx 5: Great time spent using/recovering 0.072 (0.104) Sx 6: Activities 0.199 (0.091)<sup>a</sup> foregone Sx 7: Continued use despite problems 0.237 (0.109)<sup>a</sup>

#### Analysis of the genetic covariance of AD symptoms suggests a single factor.



# **Inability to localize important variants**

Possible reasons include:

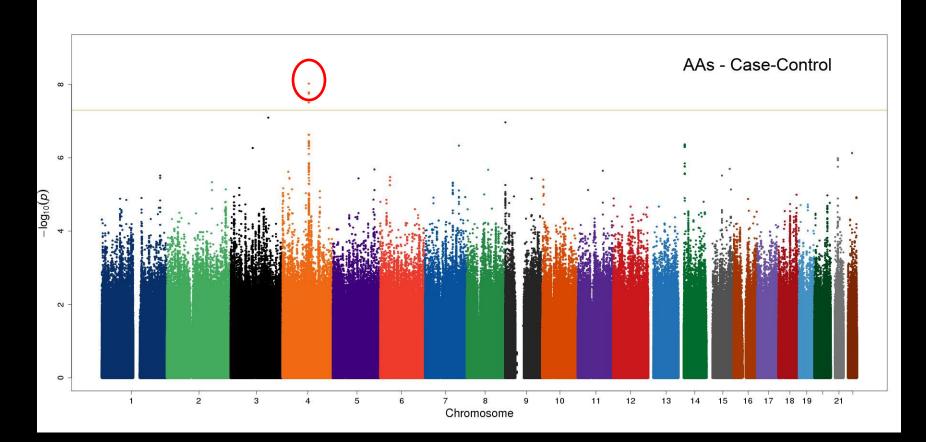
- **1.** Studies are underpowered to detect small effects.
- 2. Clinical phenotypes lack disease sensitivity.
- 3. Failure to fit model using all SNPs simultaneously.
  - a) Provides less biased SNP-effects

#### 4. Studies are biased toward a singular population.

- a) Heterogeneity in allele frequency across ancestral groups affects power for different markers.
- b) More than 90% of research into genetic causes of alcohol dependence focus on people of European descent.

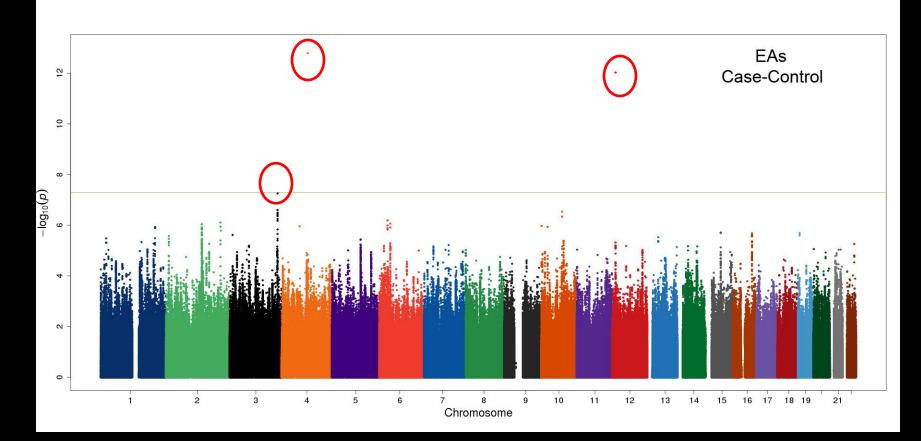
# **Recent GWAS of AD in EAs & AAs**

#### Gelernter et al., 2014


- GWAS of AD in people of European (EA) and African ancestry (AA).
- Large sample (n=16,087)
  - GWAS Discovery (9,758)
  - Multiple replication data
- 5x10<sup>-8</sup> significance threshold

#### Findings

- Novel SNPs were found
  - Chromosome 4 ADH gene cluster
  - PDLIM5 (PDZ and LIM Domain 5)
  - METAP1 (methionyl aminopeptidase 1)
  - LOC100507053 (a IncRNA gene)
  - ADH1B and ADH1C
  - Chromosomes 2, 5, 9, 19
- Evidence for biological convergence as similar gene loci were observed across EA & AA.
- Most significant SNPs were replicated in independent samples.


### **GWAS of AD: AA Results**

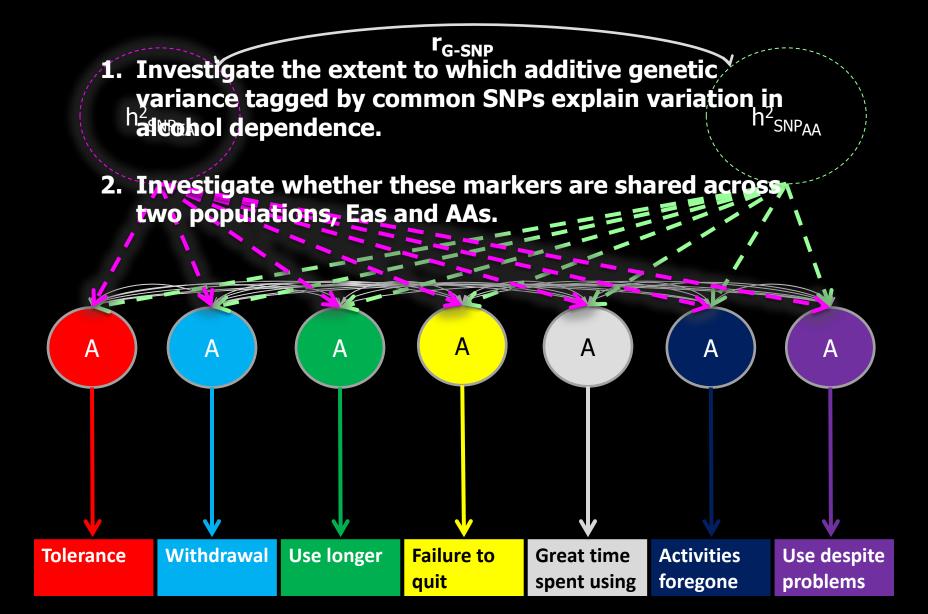
#### Gelernter et al., 2014



### **GWAS of AD: EA Results**

#### Gelernter et al., 2014




# **Current Study**

#### **Alcohol Dependence**

- 3+ (within 12 months)
  - Tolerance
  - Withdrawal
  - Drinking longer than intended
  - Failure to quit drinking
  - Much time spent using/recovering from alcohol
  - Social/occupational activities foregone
  - Drinking despite physiological/psychological problems

Determine whether similar genetic factors influence alcohol dependence in EAs and AAs?

### **Goals of the Current Study**

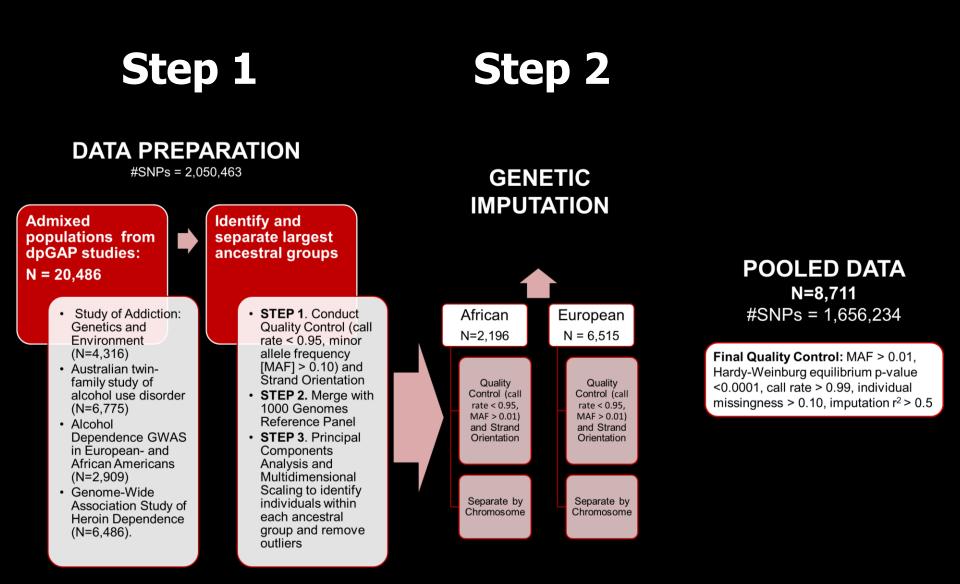


Data manipulation, imputation, and analytics

# **METHODS**



• Phenotype and genotype data were pooled across four studies (N~20,500 individuals).


| Study (original N)                                                             | Population | Original N | # SNPs  | Chip          |
|--------------------------------------------------------------------------------|------------|------------|---------|---------------|
| Heroin GWAS (N=477)                                                            | EUR        | 6487       | 601273  | Human 610     |
|                                                                                |            |            | 592839  | Human 660     |
|                                                                                |            |            | 373339  | Human CNV 370 |
| Australian GWAS (OZ-ALC) (N=6,701)<br>Alcohol Dependence GWAS in Europeans and | EUR        | 6775       | 370404  | Human CNV 370 |
| African Americans                                                              | EUR        | 2909       | 1051295 | Human Omni 1  |
| SAGE (N=4,316)                                                                 | EUR        | 4121       | 109365  | Human 1       |

 Analyses focused on ~2.2M SNPs across the various Illumina arrays.

# **Study Phenotypic Info**

- Assessments: AD diagnosis and DSM-IV AD symptoms
  - Responses were limited to individuals who have been exposed to alcohol (and possibly other drugs).
  - The effective sample for all analyses included individuals with and without a lifetime diagnosis of alcohol dependence.

# **Data Manipulation Guide**



- Step 1
  - Identify target variants across platforms
  - Import 1000 Genomes Reference Data (1GKP)
  - Prep 1KGP for ancestry determination
  - Check strand orientation in sample data
  - Integrate 1KGP with sample data
  - Estimate ancestry for sample data and select desired groups.

#### • Raw sample data for SAGE

| 🐺 GEN       | NEVA_SAGE_AR | RC_GENO_FINAL | ZEROED BED | Dataset - Sheet | 1 [4] |          |        | •       |                  |            |            |            |           |            | -          |            |            |           |                 | X   |
|-------------|--------------|---------------|------------|-----------------|-------|----------|--------|---------|------------------|------------|------------|------------|-----------|------------|------------|------------|------------|-----------|-----------------|-----|
| File        | Edit Select  | DNA-Seq Gen   | otype Nume | eric RNA-Seq    | Geno  | omeBrows | e Plot | Scripts | Help             |            |            |            |           |            |            |            |            |           |                 |     |
| 54 <b>E</b> | 3 📪 💷 🛃      |               | da 👐 💻 11  | h 🖾 🧏 📈         | ×     | 2 2      |        |         |                  |            |            |            |           |            |            |            |            |           | All: 284 x 1    |     |
|             | •            | -             |            |                 |       |          |        |         | -                |            |            |            |           |            |            |            |            |           | Active: 284 x 1 |     |
| Unsort      |              | C 1           | C 2        | C 3             | C     | 4        | B 5    | B       |                  | G 7        | G 8        |            | G 10      | G 11       | G 12       |            | G 14       | G 15      | G 16            | G 🔺 |
| Мар         | Patients     | Family ID     | Patient ID | Father ID       | MC    | other ID | Sex    |         | Affection Status | rs12354060 | rs4477212  | rs2185539  | rs6681105 | rs12184279 | rs11240767 | rs12564807 | rs3094315  | rs3131972 | rs3115860       | rs  |
| C           | nromosome    |               |            |                 |       |          |        |         |                  | 1          | 1          | 1          | 1         | 1          | 1          | 1          | 1          | 1         | 1               | =   |
| - 1         | Position     | ?             | 200        |                 | ?     | ?        |        | 0       | ?                | 10004      | 72017      | 556738     | 581938    | 707348     | 718814     | 724325     | 742429     | 742584    | 743268          |     |
| 1           | 360          | ?             | 360        |                 | ?     | ?        |        | 1       | ?                | -          | A_A        | C_C        |           | C_C        |            |            | C_T        |           | G_T             |     |
|             | 385          | ?             | 39         |                 |       | ?        |        | 1       | ?                | _          | A_A        | C_C        |           | C_C        |            |            | C_T<br>T T |           | G_T             |     |
|             | 437          | ?             | 43         |                 |       | ?        |        | 0       | ?                |            | A_A        | C_C<br>C_C |           | C_C        |            |            | U<br>U     | _         | T_T<br>T_T      |     |
|             | 457          | 2             | 45         |                 |       | ?        |        | 0       | ?                | -          | A_A<br>A_A | C_C        | _         | C_C        |            |            | C_T        |           | G_T             |     |
|             | 401 470      | ?             | 40.        |                 | 2     | ?        |        | 0       | ?                | -          | A_A<br>A_A | C_C        |           | C_C        | _          | _          | C T        | _         | ?_?             |     |
|             | 470          | ?             | 482        |                 |       | ?        |        | 1       | ?                | _          | A_A        | C_C        |           | C_C        |            |            | C_T        | _         | G_T             |     |
|             | 498          | ?             | 498        |                 |       | ?        |        | 0       | ?                | -          | A_A        | C_C        |           | C_C        |            |            | C_T        |           | G_T             |     |
| 9           |              | ?             | 51:        |                 |       | ?        |        | 0       | ?                | -          | A A        | C_C        |           | C_C        |            |            | TT         | _         | TT              |     |
| 10          |              | ?             | 520        |                 | 2     | ?        |        | 0       | ?                | _          | A_A        | C_C        |           | C_C        |            |            | C_C        | _         | G_T             |     |
| 11          |              | ?             | 56         | 7 ?             | ?     | ?        |        | 0       | ?                |            | A_A        | C_C        |           | C_C        |            |            | TT         |           | T_T             |     |
| 12          |              | ?             | 568        | 8 ?             | ?     | ?        |        | 0       | ?                | G_G        | A_A        | C_C        |           | C_C        |            |            | T_T        | C_C       | T_T             |     |
| 13          | 616          | ?             | 610        | 6 7             | ?     | ?        |        | 1       | ?                | G_G        | A_A        | C_C        | T_T       | C_C        | C_C        | A_A        | T_T        | C_C       | T_T             |     |
| 14          | 653          | ?             | 653        | 3 7             | ?     | ?        |        | 1       | ?                | G_G        | A_A        | C_C        | T_T       | C_C        | C_C        | A_A        | T_T        | C_C       | T_T             |     |
| 15          | 679          | ?             | 679        | 9 ?             | ?     | ?        |        | 1       | ?                | G_G        | A_A        | C_C        | T_T       | C_C        | C_C        | A_A        | C_T        | C_T       | G_T             |     |
| 16          | 694          | ?             | 694        | 4 ?             | ?     | ?        |        | 1       | ?                | G_G        | A_A        | C_C        | T_T       | C_C        | C_C        | A_A        | C_T        | C_T       | G_T             |     |
| 17          | 699          | ?             | 699        | 9 ?             | ?     | ?        |        | 1       | ?                | G_G        | A_A        | C_C        | T_T       | C_C        | C_C        | A_A        | C_T        | C_T       | G_T             |     |
| 18          | 702          | ?             | 702        | 2?              | ?     | ?        |        | 1       | ?                | G_G        | A_A        | C_C        | T_T       | C_C        | C_C        | A_A        | T_T        | C_C       | T_T             |     |
| 19          | 705          | ?             | 70         | 5?              | ?     | ?        |        | 0       | ?                | G_G        | A_A        | C_C        | T_T       | C_C        | C_C        | A_A        | T_T        | C_C       | T_T             |     |
| 20          | 730          | ?             | 730        | 0 7             | ?     | ?        |        | 1       | ?                | G_G        | A_A        | C_C        | T_T       | C_C        | C_C        | A_A        | T_T        | C_C       | T_T             |     |
| 21          | 741          | ?             | 74:        | 1 ?             | ?     | ?        |        | 0       | ?                | G_G        | A_A        | C_C        | T_T       | C_C        | C_C        | A_A        | C_T        | C_T       | G_T             |     |
| 22          |              | ?             | 743        |                 |       | ?        |        | 0       | ?                |            | A_A        | C_C        |           | C_C        |            |            | C_T        |           | G_T             |     |
| 23          |              | ?             | 77         |                 |       | ?        |        | 0       | ?                | -          | A_A        | C_C        |           | C_C        |            | A_A        | C_T        | C_T       | G_T             |     |
| 24          | 780          | ?             | 780        |                 |       | ?        |        | 0       | ?                |            | A_A        | C_C        |           | C_C        |            | A_A        | C_C        | _         | ?_?             |     |
|             | 784          | ?             | 784        |                 | ?     | ?        |        | 1       | ?                | G_G        | A_A        | C_C        |           | C_C        |            |            | C_T        |           | G_T             |     |
| 26          |              | ?             | 828        |                 |       | ?        |        | 1       | ?                | G_G        | A_A        | C_C        |           | C_C        |            |            | T_T        | _         | T_T             |     |
|             | 876          | ?             | 876        |                 |       | ?        |        | 1       | ?                | -          | A_A        | C_C        |           | C_C        | _          | _          | C_T        | _         | T_T             |     |
| 28          |              | ?             | 902        |                 |       | ?        |        | 1       | ?                |            | A_A        | C_C        |           | C_C        |            |            | T_T        | _         | T_T             |     |
|             | 906          | ?             | 906        |                 |       | ?        |        | 0       | ?                | G_G        | A_A        | C_C        |           | C_C        |            |            | T_T        |           | T_T             |     |
| 30          |              | ?             | 90         |                 |       | ?        |        | 0       | ?                | G_G        | A_A        | C_C        |           | C_C        |            |            | T_T        | _         | T_T             |     |
| 31          |              | ?             | 910        |                 |       | ?        |        | 1       | ?                |            | A_A        | C_C        |           | C_C        |            |            | T_T        |           | <u></u>         |     |
| 32          |              | ?             | 978        |                 |       | ?        |        | 0       | ?                | -          | A_A        | C_C        |           | C_C        |            |            | C_C        |           | ?_?             |     |
| 33          | 989          | ?             | 989        | 9 ?             | ?     | ?        |        | 1       | ?                | G_G        | A_A        | C_C        | T_T       | C_C        | C_C        | A_A        | T_T        | C_C       | T_T             | -   |
|             |              |               |            |                 |       |          |        |         |                  |            |            |            |           |            |            |            |            |           |                 |     |

|          |                                   |               |             |                 |             |               | М                | arker      | nan        | ne         | Ma         | arker     | map        | info       | Sar         | nple i                                    | info         |    |
|----------|-----------------------------------|---------------|-------------|-----------------|-------------|---------------|------------------|------------|------------|------------|------------|-----------|------------|------------|-------------|-------------------------------------------|--------------|----|
| 👎 GE     | NEVA_SAGE_AR                      | RC_GENO_FINAL | _ZEROED BED | Dataset - Sheet | 1 [4]       |               | _                |            |            |            |            |           | -          |            |             |                                           |              | Ś  |
| File     | Edit Select                       | DNA-Seq Ger   | notype Nume | ric RNA-Seq     | GenomeBrows | e Plot Script | s Help           |            |            |            |            |           |            |            |             |                                           |              |    |
| se t     | 「 🖸 😳 😅 💵 🗠 臆 🌆 🥗 📕 内 🚳 🔐 🖉 🗡 🗅 ? |               |             |                 |             |               |                  |            |            |            |            |           |            |            |             | All: 284 x 1,040,<br>Active: 284 x 1,040, |              |    |
| Unsort   |                                   | C 1           | C 2         | <b>C</b> 3      | <b>C</b> 4  | <b>B</b> 5    | <b>B</b> 6       | <b>G</b> 7 | G 8 🔌      | <b>G</b> 9 | G 10       | G 11      | G 12       | G 13       | <b>G</b> 14 | G 15                                      |              | -  |
| Мар      | Patients                          | Family ID     | Patient ID  | Father ID       | Mother ID   | Sex           | Affection Status | rs12354060 | rs4477212  | rs2185539  | rs6681105  | rs1218427 | rs11240767 | rs12564807 | rs3094315   | rs3131972                                 | rs3115860 rs | rs |
| c        | nromosome                         |               |             |                 |             |               |                  | 1          | 1          | 1          | 1          | 1         | 1          | 1          | 1           | 1                                         | 1            | =  |
|          | Position                          |               |             |                 |             |               |                  | 10004      | 72017      | 556738     | 581938     | 707348    | 718814     | 724325     | 742429      | 742584                                    | 743268       |    |
| 1        | 360                               | ?             |             |                 |             | 0             | ?                | -          | A_A        | C_C        | T_T        | C_(       | _          | A_A        | C_T         | C_T                                       | G_T          |    |
| 2        | 385                               | ?             |             |                 |             | 1             | ?                | _          | A_A        | C_C        | T_T        | C_C       |            | A_A        | C_T         | C_T                                       | G_T          |    |
| 3        | 390                               | ?             |             |                 |             | 1             | ?                | _          | A_A        | C_C        | I_I        | C_C       |            | A_A        | I_I<br>T_T  | C_C                                       | T_T          |    |
| 4        | 437                               | ?             |             |                 |             | 0             | ?                | -          | A_A        | C_C        | T_T        | C_C       |            | A_A        | T_T         | C_C                                       | T_T          |    |
| 5        | 461<br>470                        | ?             |             |                 |             | 0             | ?                | -          | A_A        | C_C<br>C_C | T_T<br>T_T | C_C       |            | A_A        | C_T<br>C_T  | C_T<br>C_T                                | G_T<br>?_?   |    |
| 6        | 470 482                           | ?             |             |                 |             | 1             | ?                |            | A_A<br>A_A | C_C        | T_T        | C_C       |            | A_A<br>A_A | C_T         | C_T                                       | G_T          |    |
| 8        | 498                               | ?             |             |                 |             | 0             | ?                |            | A_A        | C_C        | T_T        | C_C       |            | A_A        | C_T         | C_T                                       | G_T          |    |
| 9        | 511                               | . ?           |             |                 |             | 0             | ?                |            | A_A        | C_C        | T_T        | C_C       |            | A_A        | T_T         | C_C                                       | T_T          |    |
| 10       | 520                               | ?             |             |                 |             | 0             | ?                | -          | A_A        | C_C        | ?_?        |           |            | A_A        | C_C         | T_T                                       | G_T          |    |
| 11       | 567                               | ?             |             |                 | ?           | 0             | ?                |            | A_A        | C_C        | T_T        | C_C       |            | A_A        | T_T         | C_C                                       | T_T          | -  |
| 12       | 568                               | ?             |             |                 | ?           | 0             | ?                |            | A_A        | C_C        | T_T        | C_C       |            | A_A        | T_T         | C_C                                       | T_T          | -  |
| 13       | 616                               | ?             | 616         | ?               | ?           | 1             | ?                |            | A_A        | C_C        | T_T        | C_C       |            | A_A        | T_T         | C_C                                       | T_T          |    |
| 14       | 653                               | ?             | 653         | ?               | ?           | 1             | ?                | G_G        | A_A        | C_C        | T_T        | C_C       | C_C        | A_A        | T_T         | C_C                                       | T_T          |    |
| 15       | 679                               | ?             | 679         | ?               | ?           | 1             | ?                | G_G        | A_A        | C_C        | T_T        | C_0       | C_C        | A_A        | C_T         | C_T                                       | G_T          |    |
| 16       | 694                               | ?             | 694         | ?               | ?           | 1             | ?                | G_G        | A_A        | C_C        | T_T        | C_C       | C_C        | A_A        | C_T         | C_T                                       | G_T          |    |
| 17       | 699                               | ?             | 699         | ?               | ?           | 1             | ?                | G_G        | A_A        | C_C        | T_T        | C_C       | C_C        | A_A        | C_T         | C_T                                       | G_T          |    |
| 18       | 702                               | ?             | 702         |                 |             | 1             | ?                | G_G        | A_A        | C_C        | T_T        | C_C       | C_C        | A_A        | T_T         | C_C                                       | T_T          |    |
| 19       | 705                               | ?             |             |                 |             | 0             | ?                |            | A_A        | C_C        | T_T        |           |            | A_A        | T_T         | C_C                                       | T_T          |    |
| 20       | 730                               | ?             |             |                 |             | 1             | ?                |            | A_A        | C_C        | T_T        |           |            | A_A        | T_T         | C_C                                       | T_T          |    |
| 21       | 741                               | ?             |             |                 |             | 0             | ?                |            | A_A        | C_C        | I_I        |           |            | A_A        | C_T         | C_T                                       | G_T          |    |
| 22       | 743                               | ?             |             |                 |             | 0             | ?                | -          | A_A        | C_C        | T_T<br>T_T | C_C       |            | A_A        | C_T         | T_T                                       | G_T          |    |
|          | 775                               | ?             |             |                 |             | 0             | ?                |            | A_A        | C_C        | T_T<br>?_? |           |            | A_A        | C_T<br>C_C  | C_T<br>T_T                                | G_T<br>?_?   |    |
| 24<br>25 | 780<br>784                        | ?             |             |                 |             | 1             | ?                | -          | A_A<br>A_A | C_C<br>C_C | LT         |           |            | A_A<br>A_A | C_T         | C_T                                       | G_T          |    |
| 25       | 828                               | ?             |             |                 |             | 1             | ?                |            | A_A        | C_C        | י_י<br>ד_ד | C_C       |            | A_A        | T_T         | C_C                                       | T_T          |    |
| 20       |                                   | ?             |             | -               |             | 1             | ?                |            | A_A        | C_C        | T_T        | C_C       |            | A_A        | C_T         | C_T                                       | T_T          |    |
| 28       | 902                               | . ?           |             |                 |             | 1             | ·<br>?           |            | A_A        | C_C        | T_T        | C_C       |            | A_A        | T_T         | C_C                                       | T_T          |    |
| 29       | 906                               | ?             |             |                 |             | 0             | ?                |            | A_A        | C_C        | U.         | C_C       | _          | A_A        | U.          | C_C                                       | T_T          |    |
| 30       | 907                               | ?             |             |                 |             | 0             | ?                | G_G        | A_A        | C_C        | U.         | C_C       | _          | A_A        | U.          | C_C                                       | T_T          |    |
| 31       |                                   | ?             |             |                 | ?           | 1             | ?                | G_G        |            | <br>C_C    |            | C_C       |            |            | T_T         |                                           | T_T          |    |
| 32       | 978                               | ?             | 978         | ?               | ?           | 0             | ?                | G_G        | A_A        | C_C        | T_T        | C_C       |            | A_A        | c_c         | T_T                                       | ?_?          |    |
| 33       | 989                               | ?             | 989         | ?               | ?           | 1             | ?                | G_G        | A_A        | C_C        | T_T        | C_C       |            | A_A        | T_T         | C_C                                       | T_T          | -  |
|          |                                   | 1             |             |                 |             |               |                  |            |            |            |            |           | 1          |            |             |                                           |              |    |

#### Marker calls

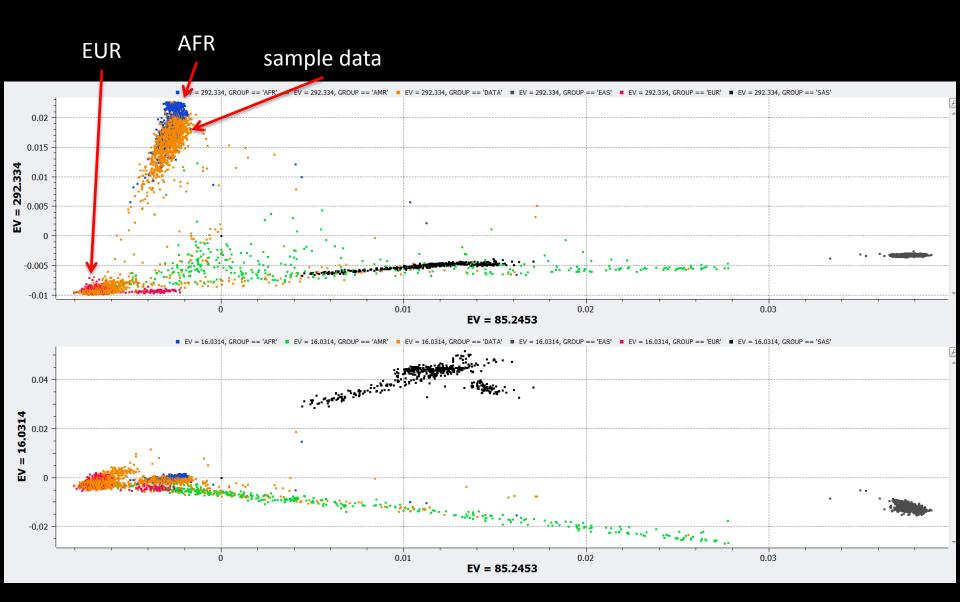
- Obtain 1KGP reference panel and filter on target variants.
  - MAF > 5%
  - Call Rate > 99%
  - LD prune (r<sup>2</sup> threshold of 0.5)
- Obtain sample information on 1KGP participants.
  - Super-population classification
    - African (AFR)
    - Americas (AMR)
    - East Asian (EAS)
    - European (EUR)
    - South Asian (SAS)

- Apply 1KGP marker map containing ancestral population specific allele frequencies to sample data.
  - QC: - CR < .95 - MAF <.1
- Check strand orientation

|   | <sub>8</sub> Ру | thon Editor                                                                                        | x    |
|---|-----------------|----------------------------------------------------------------------------------------------------|------|
|   | File            | Edit                                                                                               |      |
|   |                 | ) R = = 9 e x D <b>r</b> / + + <b>7</b> ?                                                          |      |
|   |                 |                                                                                                    |      |
|   | Marke           | rMapManager, Spreadsheet, SpreadsheetEditor, SVS, TrackManager,                                    |      |
| H | X:/P            | almer/AA021113/IMPUTATION OF GENOTYPES/PIPELINE_MATERIALS/PythonScripts/CheckStrand_ALL_updated.py |      |
| H | 23              |                                                                                                    |      |
| U | 24              | #part1: run genotype stats                                                                         |      |
| U | 25              | ssl=ghi.getCurrentObject()                                                                         |      |
| U | 26              | offset1 = ss1.markerMapOffset()                                                                    | Ξ    |
| U | 27              | ss=ss1.genotypeStatsByMarker(maf=1)                                                                | -    |
| H | 28              |                                                                                                    |      |
| H | 29              | #Part2: prompt to select Freq Field                                                                |      |
| U | 30              |                                                                                                    |      |
| H | 31              | <pre>mapFields = ss.getMarkerMapFieldNames()</pre>                                                 |      |
| H | 32              | <pre>mapFieldTypes = ss.getMarkerMapFieldTypes()</pre>                                             |      |
| H | 33              | <pre>#offset = ss.getMarkerMapOffset()</pre>                                                       |      |
| U | 34              |                                                                                                    |      |
|   | 35<br>36        |                                                                                                    |      |
|   | 37              |                                                                                                    |      |
| U | 38              | if t == ghi.const.TypeReal:                                                                        |      |
| H | 39              | index = mapFields.index(n)                                                                         |      |
| H | 40              | fieldNameList.append(n)                                                                            |      |
| H | 41              |                                                                                                    |      |
| H | 42              | if len(fieldNameList) == 0:                                                                        |      |
| H | 43              | <pre>ghi.message("There were no marker map fields of the appropriate type</pre>                    |      |
| H |                 | found.")                                                                                           |      |
| H | 44              | return                                                                                             |      |
| H | 45              |                                                                                                    |      |
| H | 46              | try:                                                                                               |      |
|   | 47              |                                                                                                    |      |
| H |                 | comparison.\n","type":"prompt"},                                                                   |      |
|   | 48              |                                                                                                    |      |
|   |                 | "list":fieldNameList}])[0]                                                                         | -    |
|   |                 | Linet C                                                                                            | -1.1 |

Line:1 Col:1

• Combing 1KGP and QC'd sample data:


#### LD pruned SNPs

| 🕴 SAGE  | Pedigree + A | ppended Sprea | dsheet = Respo | olved Strand + | 1KG LD Pruned | d - Shee | et 1 [132] |                  |            |           |           |             |           | - 1 m       |           |            |           | _ 0                         | X   |
|---------|--------------|---------------|----------------|----------------|---------------|----------|------------|------------------|------------|-----------|-----------|-------------|-----------|-------------|-----------|------------|-----------|-----------------------------|-----|
| File Ed | dit Select D | DNA-Seq Gen   | iotype Numei   | ric RNA-Seq    | Plot Scripts  | s Help   | )          |                  |            |           |           |             |           |             |           |            |           | -                           |     |
| se 🗗    | 📮 💵 🗹        | 🟡 😻 📕         | 🖄 🔟 🛱 🖌        | 🛎 🗙 🖪 🕯        | ?             |          |            |                  |            |           |           |             |           |             |           |            |           | All: 6,820<br>Active: 6,820 |     |
| Unsort  |              | C 1           | C 2            | C 3            | C 4           | В        | 5          | <b>B</b> 6       | G 7        | G 8       | G 9       | <b>G</b> 10 | G 11      | <b>G</b> 12 | G 13      | G 14       | G 15      | <b>G</b> 16                 | G ^ |
| Мар     | Patients     | Family ID     | Patient ID     | Father ID      | Mother ID     |          | Sex        | Affection Status | rs12124819 | rs1806509 | rs7537756 | rs4040604   | rs1110052 | rs28705211  | rs6696281 | rs28504611 | rs2340592 | rs1891910                   |     |
| 4299 4  | 364          | ?             | 4364           | 2              | ?             | ?        | 1          |                  | ? A_A      | A ?_?     | A_G       | ?_?         | G_G       | C_G         | ?_?       | C_C        | ?_?       | G_G                         |     |
| 4300 1  | 486          | ?             | 1486           | 7              | ?             | ?        | 1          |                  | ? A_A      | A A_C     | A_A       | G_T         | G_T       | G_G         | C_C       | C_T        | A_G       | A_G                         |     |
| 4301 5  | 75           | ?             | 575            | ?              | ?             | ?        | 0          |                  | ? A_A      | A _A      | A_A       | T_T         | T_T       | G_G         | C_C       | C_C        | G_G       | G_G                         |     |
| 4302 6  | 21           | ?             | 621            | 2              | ?             | ?        | 1          |                  | ? A_A      | A C_C     | A_A       | G_G         | G_G       | G_G         | C_T       | C_T        | A_G       | G_G                         |     |
| 4303 3  | 704          | ?             | 3704           | 2              | ?             | ?        | 1          |                  | ? A_A      | 4 C_C     | G_G       | T_T         | G_T       | G_G         | C_C       | C_C        | A_G       | G_G                         |     |
| 4304 3  | 638          | ?             | 3638           | 3              | ?             | ?        | 0          |                  | ? A_0      | 5 A_C     | A_G       | T_T         | G_T       | C_C         | C_C       | C_C        | A_G       | G_G                         |     |
| 4305 1  | .188         | ?             | 1188           | 3              | ?             | ?        | 0          |                  | ? A_0      | G A_C     | A_A       | T_T         | T_T       | G_G         | C_C       | C_C        | G_G       | A_G                         |     |
| 4306 7  | 38           | ?             | 738            | 2              | ?             | ?        | 0          |                  | ? A_A      | 4 C_C     | A_A       | G_G         | G_G       | i G_G       | C_T       | T_T        | A_G       | G_G                         |     |
| 4307 2  | 33-1204      | 233           | 1204           | 3              | ?             | ?        | 1          |                  | ? A_C      | G C_C     | A_G       | T_T         | G_T       | C_G         | C_C       | C_C        | A_G       | G_G                         |     |
| 4308 3  | 318          | ?             | 3318           | 3              | ?             | ?        | 1          |                  | ? A_0      | G A_A     | A_A       | ?_?         | ?_?       | G_G         | C_C       | C_C        | G_G       | G_G                         |     |
| 4309 4  | 349          | ?             | 4349           | 3              | ?             | ?        | 1          |                  | ? A_0      | 5 A_C     | A_G       | T_T         | G_T       | C_G         | C_C       | C_C        | A_G       | A_G                         |     |
| 4310 4  | 521          | ?             | 4521           | 3              | ?             | ?        | 0          |                  | ? A_A      | A_A       | A_A       | T_T         | T_T       | G_G         | C_C       | C_C        | G_G       | G_G                         |     |
| 4311 1  | 826          | ?             | 1826           | 7              | ?             | ?        | 1          |                  | ? A_0      | 5 A_A     | A_A       | G_G         | G_G       | i G_G       | C_T       | C_C        | A_G       | G_G                         |     |
| 4312 1  | .272         | ?             | 1272           | 3              | ?             | ?        | 0          |                  | ? A_A      | A A_C     | A_A       | G_T         | G_T       | G_G         | C_T       | C_T        | A_G       | G_G                         |     |
| 4313 3  | 284          | ?             | 3284           | 3              | ?             | ?        | 0          |                  | ? A_/      | A_A       | A_A       | G_T         | G_T       | G_G         | C_C       | C_T        | G_G       | G_G                         |     |
| 4314 3  | 976          | ?             | 3976           | 3              | ?             | ?        | 0          |                  | ? A_/      | 4 C_C     | A_G       | G_T         | G_G       | i G_G       | C_T       | T_T        | · A_A     | A_G                         |     |
| 4315 1  | .556         | ?             | 1556           | 3              | ?             | ?        | 0          |                  | ? A_A      | A_A       | A_A       | T_T         | G_T       | . C_G       | C_C       | C_C        | G_G       | G_G                         |     |
| 4316 1  | .980         | ?             | 1980           | 3              | ?             | ?        | 1          |                  | ? A_0      | 5 A_A     | A_A       | T_T         | T_T       | G_G         | C_C       | C_C        | G_G       | A_G                         |     |
| 4317 H  | IG00096      | ?             | ?              | 3              | ?             | ?        | ?          |                  | ? A_A      | A A_C     | A_A       | T_T         | G_T       | C_G         | C_T       | C_C        | A_G       | A_G                         |     |
| 4318 H  | IG00097      | ?             | ?              | 3              | ?             | ?        | ?          |                  | ? A_A      | 4 C_C     | A_G       | T_T         | G_G       | C_C         | C_C       | C_C        | A_G       | G_G                         |     |
| 4319 H  | IG00099      | ?             | ?              | 7              | ?             | ?        | ?          |                  | ? A_/      | A_A       | A_A       | T_T         | T_T       | G_G         | C_C       | C_C        | G_G       | G_G                         |     |
| 4320 H  | IG00100      | ?             | ?              | 3              | ?             | ?        | ?          |                  | ? A_0      | 5 A_C     | A_G       | T_T         | T_T       | G_G         | C_C       | C_C        | A_G       | G_G                         | i   |
| 4321 H  | IG00101      | ?             | ?              | 3              | ?             | ?        | ?          |                  | ? A_/      | A_A       | A_A       | T_T         | G_T       | C_C         | C_C       | C_C        | G_G       | A_G                         |     |
| 4322 H  | IG00102      | 2             | ?              | 3              | ?             | ?        | ?          |                  | ? A_0      | 5 A_A     | A_A       | T_T         | T_T       | G_G         | C_C       | C_C        | G_G       | A_G                         |     |
| 4323 H  | IG00103      | ?             | ?              | 3              | ?             | ?        | ?          |                  | ? A_0      | G A_C     | A_A       | T_T         | T_T       | G_G         | C_C       | C_C        | G_G       | G_G                         |     |
| 4324 H  | IG00105      | ?             | ?              | 3              | ?             | ?        | ?          |                  | ? A_0      | G A_C     | A_A       | T_T         | T_T       | G_G         | C_T       | C_C        | G_G       | G_G                         |     |
| 4325 H  | IG00106      | ?             | ?              | 3              | ?             | ?        | ?          |                  | ? A_0      | 5 A_C     | A_A       | T_T         | G_T       | C_G         | C_C       | C_C        | A_G       | G_G                         |     |
| 4326 H  | IG00107      | ?             | ?              | 3              | ?             | ?        | ?          |                  | ? A_0      | G A_A     | A_A       | T_T         | T_T       | G_G         | C_C       | C_C        | G_G       | A_A                         |     |
| 4327 H  | IG00108      | ?             | ?              | 3              | ?             | ?        | ?          |                  | ? A_A      | A A_A     | A_A       | T_T         | T_T       | G_G         | C_C       | C_C        | G_G       | G_G                         |     |
| 4328 H  | IG00109      | ?             |                | 3              | ?             | ?        | ?          |                  | ? A_0      | 5 A_C     | A_A       | T_T         | T_T       | C_G         | C_T       | C_C        | A_G       | G_G                         |     |
| 4329 H  | IG00110      | ?             | ?              | 7              | ?             | ?        | ?          |                  | ? G_(      | G A_C     | A_G       | T_T         | G_T       | C_G         | C_C       | C_C        | A_G       | A_G                         |     |
| 4330 H  | IG00111      | ?             | ?              | 1              | ?             | ?        | ?          |                  | ? A_A      | A_A       | A_A       | T_T         | T_T       | G_G         | C_C       | C_C        | G_G       | G_G                         |     |
| 4331 H  | IG00112      | ?             | ?              | 3              | ?             | ?        | ?          |                  | ? G_(      | G A_A     | A_A       | T_T         | T_T       | G_G         | C_C       | C_C        | G_G       | A_G                         |     |
| 4332 H  | IG00113      | ?             | ?              | 1              | ?             | ?        | ?          |                  | ? G_(      | G A_A     | A_A       | T_T         | G_T       | CG          | C_C       | C_C        | A_G       | G_G                         |     |
| 4333 H  | IG00114      | ?             | ?              |                |               | ?        | ?          |                  | ? A_A      | A A_C     | A_A       | T_T         | T_T       | G_G         | C_C       | C_C        | G_G       | G_G                         | -   |
| •       |              |               |                |                |               |          |            |                  |            |           |           |             |           |             |           |            |           |                             | Þ   |
|         |              |               |                | onded Coreadeb |               |          | TRC ID Dru | 1 01 14          |            |           |           |             |           |             |           |            |           |                             |     |

SAGE Pedigree + Appended Spreadsheet = respolved Strand + 1KG LD Pruned - Sheet 1

#### Combined samples

### **Ancestry Determination**



## **Ancestry Selection**

- First, compute threshold for first principal component (PC; separate largest ancestral groups).
  - EUR and AFR.
  - Retain sample data that falls within two standard deviation of the mean of the first PC in the ancestral population.
- Second, use Multidimensional Scaling to reduce stratification within EUR and AFR subgroups.
  - Use the first 3 PCs within each group to remove multidimensional outliers.

## End of Step 1

• Resulting samples after ancestry determination.

| Study (original N)          | Population | Final N | # SNPs  |
|-----------------------------|------------|---------|---------|
| Heroin C4 (N=477)           | EUR        | 374     | 514171  |
| Heroin C1 (N= $874$ )       | EUR        | 660     | 513392  |
| Heroin C2 (N=142)           | EUR        | 131     | 510886  |
| Heroin C2-GWASRel6 (N=2440) | EUR        | 2216    | 293504  |
| Heroin C3 (N=2008)          | EUR        | 1417    | 514114  |
| Heroin C4-YaleCases (N=469) | EUR        | 420     | 320248  |
| OZALC (N=6,701)             | EUR        | 6052    | 296951  |
| YALE (N=2,909)              | EUR        | 711     | 758107  |
| YALE (N=2,909)              | AFR        | 1541    | 844068  |
| SAGE (N=4,316)              | EUR        | 2434    | 825419  |
| SAGE (N=4,316)              | AFR        | 1018    | 909,846 |
| Heroin C3 (N=2008)          | AFR        | 1       | 42205   |
| Heroin C4 (N=477)           | AFR        | 1       | 43577   |

# **Imputation Preparation**

- Subset original sample file using the determined ancestral groups.
- Conduct QC and strand orientation check
  - CR > 95%
  - -MAF > 1%
  - Individual missingness > 95% per chromosome
  - Strand Check within ancestral group
- Save each chromosome as a separate \*.vcf file

# **Step 2: Imputation Description**

 Upload individual \*.vcf files to Michigan Imputation Server

Login

Sign up

**Michigan Imputation Server** 

Contact

Home

Help

This server provides a free genotype imputation service. You can upload GWAS genotypes (VCF or 23andMe format) and receive phased and imputed genomes in return. Our server offers imputation from HapMap, 1000 Genomes (Phase 1 and 3), CAAPA and the updated Haplotype Reference Consortium (HRC version r1.1) panel. Learn more or follow us on Twitter.

4.84M Genomes

1,274 Users

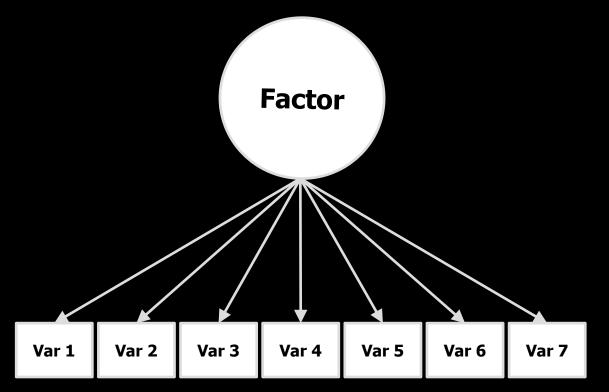


Michigan Imputation Server

The easiest way to impute genotypes

# **Step 3: Analytical Approach**

#### • Approach:


- Common Pathway Model
  - Exploratory and confirmatory factor analysis of AD symptoms.
  - Quantification of SNP heritability of identified factor(s)
- Test for invariance across ethnic groups
- GREML within & between ethnic groups
  - DeCandia et al., 2013

#### – Study Covariates included:

 age, gender, study origin (COGA, COGEND, FSCD), and ancestry (using 3 ancestral principal components).

## **Common Pathway Model**

 A multivariate statistical model that explores whether common genetic and environmental factors influence all observed variables via a single psychometric factor, or underlying latent liability.



## **Invariance Testing**

Is the same construct being measured in EAs & AAs?

- 1. Equal form: Test if the number of factors are identical across groups.
- 2. Equal loadings: Test if factor loadings are equal across groups.
- 3. Equal thresholds: Tests if the item thresholds are equal across groups.
- 4. Equal residual variances: Tests if the residual variances of the observed scores not accounted for by the factors are equal across groups.

### GREML Overview (Yang et al., 2010)

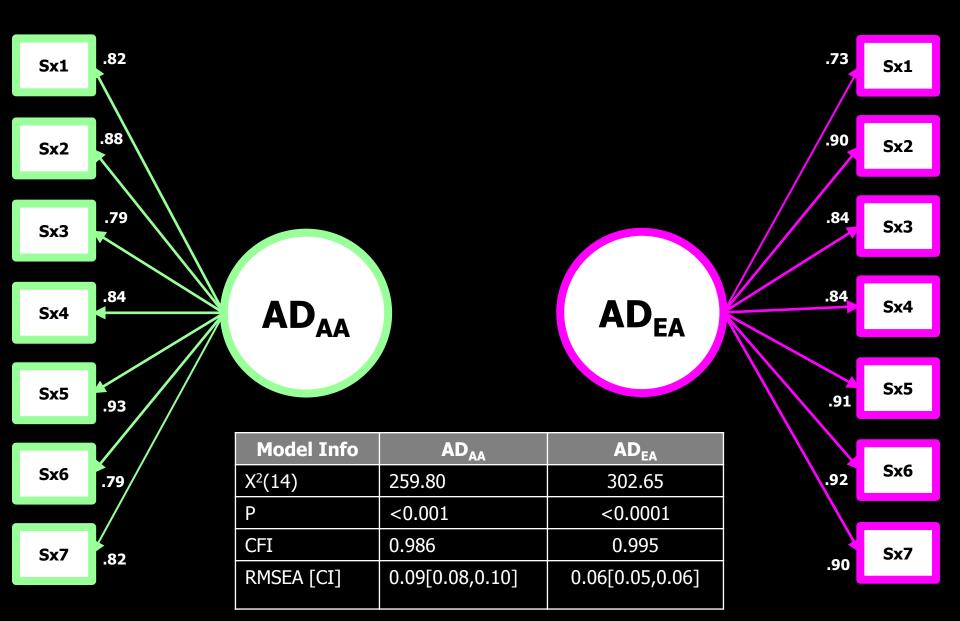
- Estimate SNP-based heritability (h<sup>2</sup><sub>SNP</sub>) of a trait:
  - Amount of phenotypic variation (VP) that is due to additive genetic variation (VA) among individuals in a population

$$h_{SNP}^2 = \frac{V_A}{V_P}$$

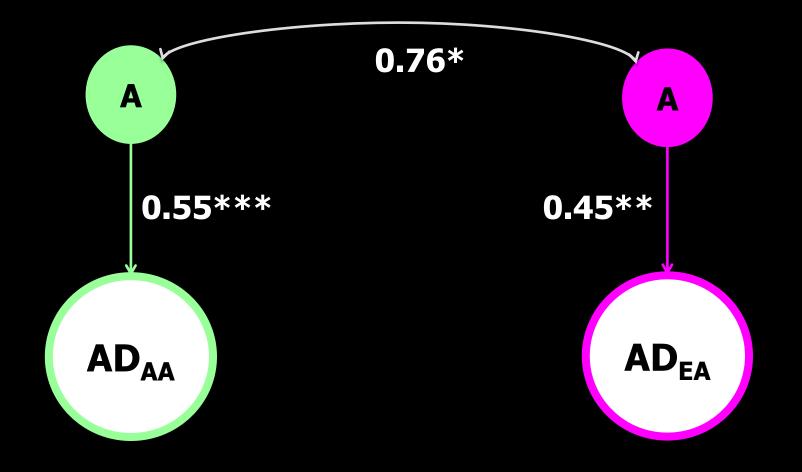


e.g. human height has a heritability of ~0.80 from twin/family studies, and a SNP-based heritability of 0.45 from genome-wide SNPS

#### **GREML Overview**


- Mixed linear model:
  - Decompose the phenotypic variance into two components:
    - 1. A random effect representing the additive genetic variance of all measured SNPs ( $h^2_{SNP}$ )
    - 2. An effect representing unmeasured environmental variance, genetic effects that were not captured (i.e. by the genotyping array), and random noise.

$$y = Xb + g + e$$
$$V = AS_g^2 + IS_e^2$$


- We incorporate fixed effects: sex, age, ancestral principle components as covariates.
- The bivariate model estimates the genetic covariance between two traits that can be captured by all SNPs.



## **CFA: Equal Forms Supported**



#### **GREML: Genetic Effects on AD factors**



\*- P < 0.05, \*\* - P < 0.01, \*\*\* - P < 0.001

# **Summary**

- Similar SNP-based heritability estimates for individuals of European and African ancestry.
- A large genetic correlation that provides evidence for overlapping genetic factors influencing AD in EAs and AAs.
- Simultaneous estimation of SNP effects may be useful, but requires careful specification and interpretation.
- Follow-up work to improve model specification and identification of variants\*.

# **Future Directions:**

#### **Dissect genetic variance using Bayesian mixture models**

Use four zero-mean normal distributions of SNP effects (0=Null effect,  $10^{-4}$  = polygenic effect,  $10^{-3}$  = small effect,  $10^{-2}$  = moderate effect).

Recall:  $h_{SNPFA}^2 = 0.20$ 

BayesR  $h_{SNP}^2 = 0.032$ ~N SNPs = 4767 Recall:  $h_{SNP_{AA}}^2 = 0.30$ 

BayesR  $h_{SNP}^2 = 0.034$ ~N SNPs = 1745

# **Disclosure & Acknowledgements**

#### **Funding sources:**

- NIAAA: K01 AA021113 [Palmer]
- NIDA: R01 DA023134 [Knopik]
- NIMH: R01MH100141 [Keller]

#### **Data Providers**

- Database of Genotypes & Phenotypes\*
  - U01 HG004422
  - U10 AA008401
  - P01 CA089392
  - R01 DA013423
  - R01 DA019963.



National Institute on Alcohol Abuse and Alcoholism

NIH...Turning Discovery Into Health®



National Institute of Mental Health



National Institute on Drug Abuse

Advancing Addiction Science

# GOLDEN HELX





