

Genetic Determinants of Rare Diseases

M. Reza Sailani, PhD

Department of Genetics Stanford University

http://snyderlab.stanford.edu/index.html

sailani@stanford.edu

- Introduction
- Our Current state of research
- An overview of two whole exome sequencing studies of mendelian diseases.

Case#1: Alopecia and Mental Retardation (APMR) Syndrome Case#2: Pseudorheumatoid Dysplasia

• Concluding remarks

Current Research:

Our laboratory develops and uses a variety of approaches to analyze genomes, other omes, and regulatory networks. We apply these approaches to understand human variation and health.

http://snyderlab.stanford.edu/index.html

We are presently in an omics revolution in which genomes and other omes can be readily characterized. Our laboratory develops and uses a variety of approaches to analyze genomes, other omes, and regulatory networks. We apply these apporaches to understand human variation and health.

Open Positions

Talented individuals looking for postdoctoral, graduate and undergraduate opportunities, please contact Dr. Snyder for more details.

Videos

Genetic Determinants Of Rare And Complex Diseases:

Type 2 diabetes

Familial Tremor

Alopecia and Mental Retardation

Pseudorheumatoid Dysplasia

Isolated Congenital Anosmia

Deafness and infertility syndrome

Epilepsy

Leukodystrophies

Intellectual Disability

Hydroxyurea treatment responses in beta-thalassemia patients

Hum Genet (2017) 136:287–296 DOI 10.1007/s00439-016-1756-5

ORIGINAL INVESTIGATION

Association of AHSG with alopecia and mental retardation (APMR) syndrome

M. Reza Sailani¹ · Fereshteh Jahanbani¹ · Jafar Nasiri³ · Mahdiyeh Behnam⁵ · Mansoor Salehi^{4,6} · Maryam Sedghi⁶ · Majid Hoseinzadeh⁶ · Shinichi Takahashi¹ · Amin Zia¹ · Joshua Gruber¹ · Janet Linnea Lynch¹ · Daniel Lam¹ · Juliane Winkelmann¹ · Semira Amirkiai¹ · Baoxu Pang¹ · Shannon Rego¹ · Safoura Mazroui⁷ · Jonathan A. Bernstein² · Michael P. Snyder¹

Received: 18 August 2016 / Accepted: 25 December 2016 / Published online: 4 January 2017 © Springer-Verlag Berlin Heidelberg 2017

Alopecia And Mental Retardation (APMR) Syndrome

- A very rare autosomal recessive condition
- Only a few families have been reported; most in the context of consanguinity.
- Affected individuals manifest with loss of hair on the scalp, the absence of eyebrows and eyelashes, and variable intellectual disability.

• However, there is high genetic heterogeneity in APMR cases as none of the families reported before shared the same aberrant locus associated with the disease.

• Linkage analyses in the past have identified three regions that are associated with APMR.

Alopecia-mental retardation syndrome candidate regions: Linkage Analyses

3q26.3-q27.3 (chr3:170,900,000-187,900,000) 17Mbp region Alopecia-mental retardation syndrome **1 (APMR1)**

Peter John · Ghazanfar Ali · Muhammad S. Chishti Syed Muhammad S. Naqvi · Suzanne M. Leal Wasim Ahmad

Localization of a novel locus for alopecia with mental retardation syndrome to chromosome 3q26.33–q27.3

Fig. 1 Pedigree of family with APMR syndrome over seven generations. *Filled symbols* represent affected subjects. *Clear symbols* represent unaffected individuals. The disease-associated haplotypes are shown beneath each symbol. Haplotypes, generated by SIMWALK2, are displayed in *bars* Alopecia-mental retardation syndrome candidate regions: Linkage Analyses

APMR2, on chromosome 3q26.2-q26.31 chr3:167,600,001-175,700,000

Clin Genet 2006: 70: 233–239 Printed in Singapore. All rights reserved © 2006 The Authors Journal compilation © 2006 Blackwell Munksgaard CLINICAL GENETICS doi: 10.1111/j.1399-0004.2006.00661.x

Short Report

A novel locus for alopecia with mental retardation syndrome (APMR2) maps to chromosome 3q26.2-q26.31

APMR3, Chr18: 18q11.2-q12.2

doi: 10.1111/j.1469-1809.2007.00362.x

Mapping of a Gene for Alopecia with Mental Retardation Syndrome (APMR3) on Chromosome 18q11.2-q12.2

A. Wali¹, G. Ali¹, P. John¹, K. Lee², M. S. Chishti¹, S. M. Leal² and W. Ahmad^{1,*}

¹Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan ²Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Alkek Building, N1619.01, TX 77030 USA

Alopecia-mental retardation syndrome: clinical and molecular characterization of four patients

A. Tzschach¹, B. Bozorgmehr², V. Hadavi², K. Kahrizi³, M. Garshasbi^{1,3}, M.M. Motazacker^{1,3}, H.-H. Ropers¹, A.W. Kuss¹ and H. Najmabadi^{2,3}

Article first published online: 4 JUL 2008

DOI: 10.1111/j.1365-2133.2008.08719.x

© 2008 The Authors. Journal Compilation © 2008 British Association of Dermatologists

Fig 1. (a) Pedigree of family 1. (b) Pedigree of family 2. (c-e) Photos of the patients of family 1: IV:1 (c), IV:2 (d) and IV:3 (e). Note absence of scalp hair, eyebrows and eyelashes. (f) Patient IV:1 of family 2.

Chr8: 8p22-p21.3 Chr14:14q24.3-q31.3 Chr1:1p31.1-p22.3

Alopecia And Mental Retardation (APMR) Syndrome

These previous studies were based on linkage analyses and were able to identify regions of interest, but no specific causative genes or variants.

We employed whole-exome sequencing to identify the underlying genetic variant(s) associated with APMR syndrome in a large consanguineous family.

Methods:

Capture Kit: Agilent SureSelectXT HumanAllExon V5

Four libraries per one lane of HiSeq2500

Hugeseq and BINA pipeline

VarSeq for variant filtering

Variant Calling Pipeline

As an **autosomal recessive mode of inheritance** is indicated both by the pattern of segregation of APMR syndrome in this family and in previous reported families, we began by searching for **homozygous variants**.

We selected variants with minor allele frequency (MAF) less than 0.01 in public databases:

- dbSNP Common 144 (Database of Single Nucleotide Polymorphism, NCBI).
- 1000 Genome project phase 3 (http://www.1000genomes.org).
- Exome Aggregation Consortium (ExAC).
- Exome Variant Server-NHLBI GO Exome Sequencing Project (ESP), Seattle, WA (http://evs.gs.washington.edu/EVS/).

١	/arSeq 1.4.4 Release Notes			ons 4							
(🔇 New Project			Local						
	Project Template				Filter: •		(Any type)		(Any ass	embly)	
	Folder: Project Templates Cancer Gene Panel Starter Template Exome Trio Template FamilyExtended Hereditary Gene Panel Starter Template Tumor-Normal Template Empty Project	FamilyExtended	Reset Browse	abilistic model for d in this the ability (ell attended, with g portant the update	Name A Image: Second	Species Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Unknown Unknown	Build GRCh_37 GRCh_37 GRCh_37_g1k GRCh_37 GRCh_37 GRCh_37 GRCh_37_g1k GRCh_37_g1k GRCh_37_g1k GRCh_37_g1k Unknown Unknown	Type Variant Gene Variant Interval Variant Variant Variant Variant Variant Gene Tabular Tabular	Size 2.0G 14M 4.2M 9.8M 6.1G 857M 857M 554M 756M 827M 13M 1.5M 816K	Date 2016-01-06 2011-05-25 2015-11-10 2014-03-10 2012-12-10 2012-12-10 2012-12-10 2014-09-18 2015-04-07 2015-04-22 2014-09-05 2016-08-10 2016-06-28	Uri /Users/sailani/Lit /Users/sailani/Lit /Users/sailani/Lit /Users/sailani/Lit /Users/sailani/Lit /Users/sailani/Lit /Users/sailani/Lit /Users/sailani/Lit /Users/sailani/Lit /Users/sailani/Lit /Users/sailani/Lit /Users/sailani/Lit
	Genome Assembly Homo sapiens (Human), GRCh37 g1k (Fe Project Name: FamilyExtended Folder: /Users/sailani/Desktop/VARseqV0	b 2009) CF/FamilyExtended	© Browse			Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens	GRCh_37 GRCh_38 GRCh_37 GRCh_37_g1k GRCh_37_g1k GRCh_38 NCBL_36 GRCh_37	Gene Gene Variant Gene Gene Variant	5.9M 6.7M 86M 7.1M 9.0M 6.4M 254M	2014-02-19 2014-07-16 2015-04-22 2015-04-16 2015-04-17 2014-02-19 2011-01-10	/Users/sailani/Lii /Users/sailani/Lii /Users/sailani/Lii /Users/sailani/Lii /Users/sailani/Lii /Users/sailani/Lii /Users/sailani/Lii showing (24/39),
			Cancel OK	artment at Stanford AHSG with alopec	Type Container						

			· · · · · · · · · · · · · · · · · · ·	- V :												- C	
Zusseitu (Alassel)(4T) is (Hemerussus)(sisst mis > =	Variant Info			AlopecIV4T							AlopecV2						
Zygosity (Alopeciv41) is (Homozygous variant, mis 🔩 –	Chr:Pos A	RefAlt	Identifier	AD	DP	GQ	GT	Filter	AF	Zygosity	AD	DP	GQ	GT	Filter		
Heterozygous 588	1:14653	C/T	rs375086259	8,2	?	30	0/1	?	0.2	Heterozygous	?,?	7	21	0/0	?		
Homozygous Variant 56	1:14677	G/A	rs201327123	2.2	16	47	0/0	?	?	Reference	2.2	10	4	0/0	?		
Reference 26	1:6951	A/G	rs75062661	2,2	0	0	0/0	?	?	Reference	0,41	?	99	1/1	?		
Missing	1:721450	G/A	rs2977675	2,2	161	67	0/0	?	?	Reference	50,16	?	99	0/1	?	0	
56	1:721757	T/A	rs189147642	57,28	?	99	0/1	?	0.329412	Heterozygous	30,16	?	99	0/1	?	0	
Zygosity (AlopecV2) is (Homozygous Variant, missi 🔌 -	1:762109	C/T	?	312,69	?	99	0/1	?	0.181102	Heterozygous	141,36	?	99	0/1	?		
Heterozygous 8	1:762273	G/A	rs3115849	84,81	?	99	0/1	?	0.490909	Heterozygous	0,99	?	99	1/1	?		
Homoturgous Variant	1:876499	A/G	rs4372192	0,19	?	57	1/1	?	1	Homozygous Variant	0,12	?	36	1/1	?		
Defenses	1:877715	C/G	rs6605066	0,11	?	33	1/1	?	1	Homozygous Variant	?,?	1	0	0/0	?		
Helerence 44	1:87783	T/C	rs6672356	0,15	?	45	1/1	?	1	Homozygous Variant	0,4	?	12	1/1	?		
Missing	1:878314	G/C	rs142558220	91,71	?	99	0/1	?	0.438272	Heterozygous	?,?	62	99	0/0	?		
4	1:880238	A/G	rs3748592	0,136	?	99	1/1	?	1	Homozygous Variant	0,78	?	99	1/1	?		
🛃 Zygosity (AlopecV3) is (Homozygous Variant, missi 🔌 -	1:881627	G/A	rs2272757	34,27	?	99	0/1	?	0.442623	Heterozygous	3,17	?	42	0/1	?		
Heterozygous	1:883625	A/G	rs4970378	0,94	?	99	1/1	?	1	Homozygous Variant	0,35	?	99	1/1	?		
Homozygous Variant 3	1:887560	A/C	rs3748595	0,131	?	99	1/1	?	1	Homozygous Variant	0,42	?	99	1/1	?		
Reference	1:88/563	1/0	1	27.2	109	99	0/0	۲ م	0.0512921	Reference	1,1	43	99	0/0	2		
Missing	1:88780		re3828047	37,2	r 2	08	1/1	2	0.0512821	Homozygous Variant	r,r 0.30	29	84 90	0/0	2		
3	1:888639	T/C	rs3748596	0,40	?	99	1/1	?	1	Homozygous Variant	0,134	?	99	1/1	?		
Zvgosity (MR20-VI-10) is (Homozvgous Variant, mi: 4	1:888659	T/C	rs3748597	0,214	?	99	1/1	?	1	Homozygous Variant	0,129	?	99	1/1	?		
Heterozygous	1:894573	G/A	rs13303010	0,97	?	99	1/1	?	1	Homozygous Variant	0,59	?	99	1/1	?		
Homozygous Variant	1:897325	G/C	rs4970441	0,322	?	99	1/1	?	1	Homozygous Variant	0,130	?	99	1/1	?		
Reference C	1:897460	A/C	?	56,11	?	29	0/0	?	0.164179	Reference	?,?	52	0	0/0	?		
Missing	1:897564	T/C	rs13303229	0,206	?	99	1/1	?	1	Homozygous Variant	0,83	?	99	1/1	?		
	1:898323	T/C	rs6605071	0,68	?	99	1/1	?	1	Homozygous Variant	0,48	?	99	1/1	?		
2	1:900505	G/C	rs28705211	49,41	?	99	0/1	?	0.455556	Heterozygous	36,27	?	99	0/1	?	C	

		Variant I	nfo	AlopecIV4T								Alope	cV2
2	Chr:Pos 🛦	RefAlt	Identifier	AD	DP	GQ	GT	Filter	AF	Zygosity	AD	DP	GQ
🔽 Sequence Ontology (Combined) is missense_varial 🔦 🗕	3:186338	G/A	rs201849460	2,177	?	99	1/1	?	0.988827	Homozygous Variant	0,83	?	99
3_prime_UTR_variant 0													
5_prime_UTR_premature_start_codon_gain_variant 0													
5_prime_UTR_variant 0													
disruptive_inframe_deletion 0													
disruptive_inframe_insertion 0													
frameshift_variant 0													
inframe_deletion 0													
inframe_insertion 0													
initiator_codon_variant 0													
intergenic_variant 0													
intron_variant 1													
missense_variant 1													
non_coding_exon_variant 0													
splice_acceptor_variant 0													
splice_donor_variant 0													
splice_region_variant 0													
stop_gained 0													
stop_lost 0													
stop_retained_variant 0													
synonymous_variant 0													
Missing 0													
1													

Variant filtering steps using VarSeq software

Individual ID	7.2	7.3	6.10	6.05					
Total Variations	135,267	135,766	138,352	137,386					
Shared variants	126,637								
Homozygote variants	13,156								
1KG MAF 0.01	282								
EXaC MAF 0.01	152								
UK 10K Twin MAF 0.01	66								
NHLBI MAF 0.01	2								
Exonic Variants	1								
Candidate	Chr3: 186338565 ; rs201849460 ; AHSG: c.950G>A, p.Arg								

MAF minor allele frequency. 1 kg, 1000 Genome project phase 3,. EXaC, Exome Aggregation Consortium version 0.3. dbSNP 144, Database of Single Nucleotide Polymorphism, NCBI. NHLBI, Exome Variant Server; NHLBI GO Exome Sequencing Project (ESP)

The identified variant (rs201849460) is rare, predicted to be deleterious and falls within exon 7 of AHSG gene.

(MAF 0.0008% in EXaC, 0.04% in dbSNP 144; no homozygotes)

rs201849460

Population Frequencies

Population	Allele	\$ <mark>4</mark>	Allele Number	\$ Number of Homozygotes	\$ Allele Frequency	•
South Asian	4	1	6508	0	0.0002423	
African	1	1	0348	0	9.664e-05	
Latino	1	1	1566	0	8.646e-05	
European (Non- Finnish)	4	6	6630	0	6.003e-05	
East Asian	0	8	646	0	0	
European (Finnish)	0	6	614	0	0	
Other	0	9	08	0	0	
Total	10	1	21220	0	8.249e-05	

Runs of Homozygosity and AHSG location on chromosome 3.

ROH are long stretches of consecutive homozygous genotypes reflecting segments shared identically

by descent (Broman and Weber 1999) and known to harbor mutations for recessive diseases.

AHSG resides within a 17 Mb linkage region previously reported to be associated with APMR (APMR1)

Alopecia-mental retardation syndrome **1 (APMR1)** 3q26.3-q27.3 (chr3:170,900,000-187,900,000) 17Mbp region

Peter John · Ghazanfar Ali · Muhammad S. Chishti Syed Muhammad S. Naqvi · Suzanne M. Leal Wasim Ahmad

Localization of a novel locus for alopecia with mental retardation syndrome to chromosome 3q26.33–q27.3

The amino acid sequence of AHSG colored according to the conservation scores.

The conservation scale:

Variable Average Conserved

- e An exposed residue according to the neural-network algorithm.
- b A buried residue according to the neural-network algorithm.
- f A predicted functional residue (highly conserved and exposed).
- s A predicted structural residue (highly conserved and buried).
- Insufficient data the calculation for this site was performed on less than 10% of the sequences.

p.Arg317His occurs in a predicted functional residue, highly conserved and exposed (generated by ConSurf method).

We confirmed the homozygosity of this variant by Sanger sequencing

Post-translational modifications (PTMs) are common in AHSG protein The identified variant is predicted to affect the pro-peptide

	R317H 367
• •	• • • • •
A	A AAA
Glycosylation site	Phosphothreonine
Modified residue	
 Disulfide bond 	
Signal peptide	
Fetuin chain A and B	Immune-precipitating AHSG from serum followed
Propeptide	by SDS polyacrylamide gel electrophoresis
	Glycosylation site Modified residue Disulfide bond Signal peptide Fetuin chain A and B Propeptide

Arg317His disrupts a phosphorylation motif

p.Arg317His disrupts this phosphorylation motif, potentially leading to a loss of phosphorylation at p.Thr319.

We used MIMP algorithm to evaluate the potential impact of p.Arg317His on this motif.

- AHSG as a phosphorylated glycoprotein is a multifunctional extracellular calciumregulatory protein.
- Is an important participant of diverse normal and pathological processes, including production of growth hormone (GH), nerve growth factor (NGF), transforming growth factor II (TGFb).
- Promotes primary keratinocyte migration.
- Is particularly abundant at sites where basal keratinocytes are reorganizing to form hair follicle placodes.

We therefore suggest AHSG gene as a potential Candidate for APMR in this family.

Case #2

WISP3 mutation associated with Pseudorheumatoid Dysplasia

Here we report genetic characterization of a family segregating an uncharacterized from of skeletal dysplasia.

The patients were asymptomatic at birth, with normal growth, development and intelligence as well as no facial, joint, and skeletal system deformity. However, the disease started to manifest at four to six years of age in affected individuals and progressively worsened.

Variant Calling Pipeline

As an **autosomal recessive mode of inheritance** is indicated by the pattern of segregation of disease in this family, we began by searching for **homozygous variants**.

We selected variants with minor allele frequency (MAF) less than 0.01 in public databases:

- dbSNP Common 144 (Database of Single Nucleotide Polymorphism, NCBI),
- 1000 Genome project phase 3 (http://www.1000genomes.org),
- Exome Aggregation Consortium version (ExAC)
- Exome Variant Server-NHLBI GO Exome Sequencing Project (ESP), Seattle, WA (http://evs.gs.washington.edu/EVS/),

Individual ID	I-2	II-1	II-2	II-3	II-4					
Shared variants		•	163,116		•					
Homozygote variants in affected		1,064								
but heterozygote variants in										
parents										
1KG MAF < 0.01		373								
EXaC MAF < 0.01		325								
dbSNP 144 MAF < 0.01			322							
NHLBI MAF < 0.01			320							
UK 10K twins			286							
UK 10K ALSPAC			286							
Exonic Variants			26							
Pathogenic			1							
(Missense or Stop gain/loss)										
Candidate		Chr6:	112,382,301; WISP3;c.210	C>A; p.Cys70*						

MAF minor allele frequency. 1 kg, 1000 Genome project phase 3,. EXaC, Exome Aggregation Consortium version 0.3. dbSNP 144, Database of Single Nucleotide Polymorphism, NCBI. NHLBI, Exome Variant Server; NHLBI GO Exome Sequencing Project (ESP)

Our study is the first to report a homozygote loss of function mutation for rs121908901; WISP3;c.210C>A; p.Cys70*.

rs121908901

Population Frequencies

Population	Allele Count	Allele Number	Number of Homozygotes ≑	Allele Frequency
South Asian	1	16512	0	6.056e-05
European (Non- Finnish)	3	66736	0	4.495e-05
African	0	10406	0	0
East Asian	0	8654	0	0
European (Finnish)	0	6614	0	0
Latino	0	11560	0	0
Other	0	908	0	0
Total	4	121390	0	3.295e-05

We confirmed the homozygosity of this variant by Sanger sequencing and showed that

the variant segregates in the family

Loss-of-function mutations in the *WISP3* gene has been associated with Progressive pseudorheumatoid dysplasia (PPD)

In 1998, linkage studies in consanguineous families segregating PPD (El-Shanti et al, 1998; Fischer, J. et al 1998) mapped the candidate region on a 3-cM interval on chromosome 6q22.

One year later, Hurvitz et al 1999 showed that mutations in the WISP3 gene that fall within the linkage region are the strongest candidate to cause this autosomal recessive condition (Hurvitz et al 1999).

letter

🗱 © 1999 Nature America Inc. • http://genetics.nature.com

Mutations in the CCN gene family member *WISP3* cause progressive pseudorheumatoid dysplasia

Jennifer R. Hurvitz¹, Wafaa M. Suwairi^{1,2,3}, Wim Van Hul⁴, Hatem El-Shanti⁵, Andrea Superti-Furga⁶, Jean Roudier⁷, Daniel Holderbaum⁸, Richard M. Pauli⁹, J. Kenneth Herd¹⁰, Els Van Hul⁴, Hossien Rezai-Delui¹¹, Eric Legius¹², Martine Le Merrer¹³, Jamil Al-Alami¹⁴, Sultan A. Bahabri³ & Matthew L. Warman¹

Progressive pseudorheumatoid dysplasia (PPD):

A rare skeletal dysplasia characterized by predominant involvement of articular cartilage with progressive joint stiffness.

is an autosomal recessive genetic disease.

PPD remains a diagnostic challenge because of the rarity of the disease and the heterogeneity in the phenotypes, as well as having similarities with other disorders.

PPD is caused by Wnt1-inducible signaling protein 3 (WISP3) mutations.

Clinical and radiographic findings in a 13-year-old male PPD patient

WISP3 encodes Wnt1-inducible signaling protein 3, a cysteine-rich, multidomain, secreted protein

WISP3:c.210C>A p.Cys70* occurs in IGFBP N-terminal domain

The variant identified in this study at p.Cys70* would, if not subjected to nonsense mediated mRNA decay, produce a significantly truncated protein that misses major part of the protein making it unlikely that normal protein function would be retained.

Conclusion:

Combining our whole exome sequencing data with clinical documentation (familial histories, genetic data, clinical and radiological findings), we have diagnosed the families with Progressive Pseudorheumatoid Dysplasia (PPD).