

Getting More from GWAS

February 11, 2015

Bryce Christensen Director of Services

Questions during the presentation

Use the Questions pane in your GoToWebinar window

About Golden Helix

DISCOVERY DR

Founded in 1998

- 66-

- Multi-disciplinary: computer science, bioinformatics, statistics, genetics
- Software and analytic services
- Hundreds of literature citations

- Powerful visualization software for DNA and RNA sequencing data
- Supports most standard bioinformatics file formats
- Fast and responsive for interactive analysis
- Intuitive controls
- Stream data from the cloud and from your own remote data servers

GenomeBrowse

VarSeq

- Powerful environment for annotation, filtering and visualization of DNAseq data
- Intuitive interface
- Repeatable workflows
- Optimized for clinical applications

SNP & Variation Suite (SVS)

- 0 - 13

8

GenomeBrowse

RNA-Seq Analysis

SNP Analysis

CNV ånalveie DNA-Seq Analysis

PBAT Analysis

Core Features

- Powerful Data Management
- Rich Visualizations
- Robust Statistics
- Flexible

Applications

- Genotype Analysis
- DNA sequence analysis
- CNV Analysis
- RNA-seq differential expression

2 Haplotypes and Haplotype Testing

3 Runs of Homozygosity

4 Q&A

Previous GWAS Webcasts Online

The GWAS Era

Slide Credit: Teri Manolio

- Array-based GWAS has been the primary technology for genefinding research for the past decade
- Most published results are common variants with small effect on phenotype

GWAS is based on tag-SNPs

- GWAS tests measure the relationship between A and C, assuming that B won't be tested on the array
- Tagging known variation is major consideration of GWAS array design
- But some variants may still be poorly represented, leading to potential type-2 errors and "missing heritability"

How to get more from GWAS

- Can we learn more from existing data?
- Collecting more samples or investing in NGS isn't always possible.
- Combinations of neighboring markers may give a better representation of some ungenotyped SNPs.
- Haplotypes capture greater allelic diversity than individual SNPs.
- Runs of homozygosity (ROH) can capture trait associations that aren't specific to a particular allele.

From tag-SNPs to Haplotypes

- Haplotype: Set of sequential alleles found on a single chromosome
- Haplotypes tend to be conserved across generations and populations
 - Linkage Disequibrium (LD)
 - "LD Blocks"
- Haplotypes may serve as markers for disease susceptibility loci

Inference from Haplotypes

- In this example, the C allele at position "B" only occurs when the 3 observed alleles on the haplotype are A-G-A.
- The A-G-A haplotype can serve as a marker for the causal C allele
- This is also the theoretical basis for genotype imputation

GOLDEN HELX SNP & VARIATION SUITE Demonstration

Haplotype Estimation

pixshark.com

- Gametic phase is generally unknown in GWAS data
- Haplotype inference, or "phasing," is based on probability
- Allele frequency and co-occurrence rate in unphased genotypes inform phasing algorithm
- Accuracy improves with larger sample sizes
- Family information is very valuable if available

Haplotype Estimation in SVS

C

Expectation Maximization

- MLE of sample haplotype probability
- Iterative process
- Default method in SVS

Compound Haplotype Method

- Directly computed
- Faster
- Incorporates Hardy-Weinberg correction

Haplotype Block Detection			X
488290 markers active in 22 chro	mosomes.		
Block Detection Haplotype	Estimation		
Haplotype Estimation Options	5		
Estimate frequencies using (CHM O EM		
Maximum EM iterations:	50		
EM convergence tolerance:	0.0001		
Frequency threshold:	0.01		
Impute missing values for	r haplotypes		
			_
Help Restore Option	s▼ <u>Save Options▼ Run</u>	<u>C</u> and	cel

Options to Identify Haplotypes in SVS

- Manual identification of marker blocks in GenomeBrowse LD plots.
 - Useful for following up on regions of interest
- Automated detection of LD blocks throughout the genome
 - Algorithmic approach to identify marker blocks with minimal historic recombination

Sliding Window selection

- Window based on number of SNPs or region size in kilobase pairs.
- Window size selection may affect results.
- Exhaustive, "brute force" approach.

Haplotype Block Detection	n				x
488290 markers active in 22 ch	romosomes.				
Block Detection Haploty	pe Estimation				
Block Defining Algorithm					
Minimize historical recombin	nation (Gabriel	et al.)			
Build blocks without subs	tantial historica	al recombination	on by:		
Requiring "Strong LD bounds on D' with:	" between bloc	k pairs with o	ne-sided cor	nfidence	
upper confidence bound >		0.98			
and lower confidence bound >		0.7]	
with		95% Confidence			
Reject pairs with upper bound < 0.9					
General Options					\leq
Skip SNPs with MAF <	0.05]		
Max # markers in a block:	30]		
Max length of a block:	160		kb		
Help Restore Option	ons▼ <u>S</u> ave (Options 🔻	<u>R</u> un	<u>C</u> ar	icel

- Haplotype Association Tests
 - Binary traits
 - Chi-Square test
 - Test results per haplotype or per block

Haplotype Trend Regression

- Quantitative or binary traits
- Allows covariate adjustment
- Test results per block
- Detailed output about individual haplotypes

GOLDEN HELX SNP & VARIATION SUITE Demonstration

Runs of Homozygosity

- ROH identifies homozygous chromosomal segments of a certain length
- May be a marker for autozygosity and/or recessive trait inheritance
- ROH analysis does not require samples to have the same alleles
- Associates trait with a locus, but not a particular allele

ROH Options in SVS

- Identify ROH segments by minimum number of SNPs or by minimum length
- Options to allow for missing data and sporadic heterozygous genotypes
- Maximum gap between SNPs
- Minimum SNP density

Runs of Homozygosity for GWAS
565 samples and 488290 markers from chromosomes: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
Run Options Output Options
Finding Maximum Length Runs of Homozygosity
Minimum run length:
Distance: 500 kb with min # SNPs: 25
SNPs: 100
Heterozygotes:
Do not allow heterozygotes
Allow runs to contain up to 1 heterozygote(s)
Allow runs to contain up to 1 heterozygote(s) within a 5 SNP window
Allow runs to contain up to 1 consecutive heterozygote(s)
Missing Genotypes:
Allow any number of missing genotypes
Allow runs to contain up to 5 missing genotype(s)
Allow runs to contain up to 1 missing(s) within a 5 SNP window
Allow runs to contain up to 1 consecutive missing genotype(s)
Maximum gap betwen SNPs in a run: 100 kb
Minimum density of a run: 1 SNP per 50 kb
<u>H</u> elp Restore <u>O</u> ptions ▼ <u>Save Options ▼</u> <u>Run</u> <u>C</u> ancel

ROH Outputs in SVS

ROH segment list

- Tip: Format is similar to CNV segment list
- Some CNV output functions are very useful here!

Binary ROH status

- Merge this with phenotypes and use for association tests

Clusters of runs

- Multiple options to identify regions where a specified minimum number of samples have overlapping ROH segments.
- "Optimal" clusters
- Haplotype similarity clusters
- May be used for association testing purposes

GOLDEN HELX SNP & VARIATION SUITE Demonstration

Summary

- GWAS is useful for associating traits with common variants
- Haplotype analysis and other methods that consider multiple SNPs may reveal associations that are not evident in standard GWAS tests.
- ROH analysis can be useful to identify recessive trait loci and other genomic features
- SVS is a powerful platform for analysis of GWAS data

msue.anr.msu.edu

Questions or more info:

- Email info@goldenhelix.com
- Request an evaluation of the software at <u>www.goldenhelix.com</u>
- Check out our abstract competition!

Questions?

Use the Questions pane in your GoToWebinar window

- Quest	ions	2 ×
🛛 Show	Answered Questions	
х	Question	Asker
	stions Here	
Ask Ques		
Ask Ques		
Ask Ques	ivately Send to All	<u>×</u>

