

GENOMIC ANALYSES FOR PALATABILITY OF BEEF

Raluca Mateescu | Associate Professor of Quantitative **Genetics & Genomics**

Outline

Research program overview

2 Genomic analyses for palatability

2.1 Genome-wide association (GWAS)

2.2 Genomic Prediction

2.3 GWAS signals — underlying biology

Research program focus

Genetic control of complex traits

- Major advances in animal genomics
- Improve animal production efficiency & enhance animal products for human heath

<u>Healthfulness Project</u>: development of genetic tools to improve **nutritional** and **health** value of beef.

Sustainable small ruminant production through selection for resistance to internal parasites

Genomic tools to improve meat quality traits in Angus-Brahman cattle.

Genomics of **resilience** in sheep to climatic stressors

CORNEL.

"Healthfulness Project"

• Project Goal:

- Assess the natural variation in healthfulness traits
- Identify genetic mechanism controlling these traits
- Develop tools to select for:
 - More nutritious beef
 - Tasty beef
 - Improved production

Genetic evaluation for nutrient composition of beef could result in development of **<u>gEBV</u>** to aid selection for:

- favorable fatty-acid profile
- lower levels of cholesterol and saturated fat
- higher concentrations of minerals and vitamins

Beef Healthfulness Project

- 3 Angus herds (n = 2,285): Iowa, Oklahoma, California
- Harvest: October 2007 May 2008
- <u>Growth</u>
 - Birth, weaning, yearling, slaughter weights

• <u>Carcass</u>

- Hot carcass weight, dressing %, ribeye area, back fat thickness, yield grade, quality grade, KPH
- Meat Quality
 - WBSF, Sensory panels (Juiciness, Tenderness, Connective tissue & Flavor: beef, painty/fishy, livery/metallic), TBARS
- <u>Nutritional value and Healthfulness</u>
 - Fatty acids, main FA groups (SFA, MUFA, PUFA, n3, n6), AI Triacylglycerol, Phospholipid, Composite
 - Cholesterol, sphingolipids, creatine, creatinine, carnitine, carnosine, anserine
 - Minerals: iron, sodium, magnesium, manganese, zinc, phosphorus, potassium, calcium, copper
 - Vitamins: E, B6

All animals genotyped with the Illumina Bovine **50K SNP** Bead Chip

5 generation

pedigree

(n = 5,907)

What do consumers want?

• The National Beef Quality Audit

 Seedstock Producers, Cow-Calf Producers, Stockers/ Backgrounders, Feedlot Operators, Packers, Purveyors, Retailers, & Restauranteurs

 "Eating satisfaction" - only quality category for which the packers, food service buyers, and retailers are willing to pay a premium

NBQA Strategy Workshop

- Discuss the implications of research for the U.S. beef industry, provides the beef industry with a blueprint for the next five years
- Top 10 Quality Challenges:
 - Low overall uniformity & consistency of cattle, carcasses, cuts
 - 2. Inappropriate carcass size & weight
 - 3. Inadequate tenderness of beef
 - 4. Insufficient marbling

National Beef Quality Audit

Quality Challenges

Ranked according to priority, 1991 to 2011

1991	1995	2000	2005	2011
External Fat	Overall Uniformity	Overall Uniformity	Traceability	Food Safety
Seam Fat	Overall Palatability	Carcass Weights	Overall Uniformity	Eating Satisfaction
Overall Palatability	Marbling	Tenderness	Instrument grading	How and where cattle were raised
Tenderness	Tenderness	Marbling	Market Signals	Weight and Size
Overall Cutability	External and Seam Fat	Reduced quality due to implants	Segmentation	Lean, Fat and Bone
Marbling	Cut weights	External Fat	Carcass Weights	Cattle Genetics

National Beef Quality Audit – 2011

Specific recommendations to reduce barriers and improve beef profitability

- Increase funding to improve eating satisfaction
- Use genetics to optimize cutability and palatability

• Fit Cattle with Customer Expectations

 Assist producers with use of selection and management techniques to produce cattle that fit customer expectations and other valuedetermining attributes

Selection/ Prediction challenges

- Trait measured after slaughter, expensive to measure routinely, low consistency
- Currently USDA grading system (marbling and maturity) is used to predict palatability of beef
 - Changes in consumer preference
 - Limitation in the ability to predict eating quality
 - Limited consumer understanding of the system
 - Programs to improve eating quality
 - Ability to better predict the eating quality level for market purposes

Increase consumer's confidence that quality expectations are met

Higher quality grade = more tender and palatable meat

Sample Collection and Preparation

- Rib sections:
 - Transported to ISU Meat Laboratory, or shipped from California to OSU
 - Fabricated into steaks
 - Frozen at 14d postmortem

Warner-Bratzler Shear Force (WBSF)

- Broiled on impingement oven at 200°C to internal temperature of 68°C
- Cooled at 4^oC for 18-24 h

- Six 1.27 cm cores removed and sheared
- Average peak load (kg) was analyzed

Sensory Panels

- Cooked similarly to steaks for WBS
- Sessions conducted once or twice per day
- 12 samples served randomly to panelists
- Served to eight member trained panel

all

Sensory Panel Evaluation

- Evaluated juiciness, tenderness, flavor
 - Juiciness 8 point scale (1 = extremely dry and 8 = extremely juicy)
 - Tenderness 8 point scale (1 = extremely tough and 8 = extremely tender)
 - Connective Tissue 8 point scale (1 = abundant and 8 = none)
 - Beef, Painty/Fishy, and Livery/Metallic Flavors 3 point scale (1 = not detectable, 2 = slightly detectable, and 3 = strong)

Palatability statistics

Trait	Ν	Mean ± SD
WBSF	2,076	3.54 ± 0.77
Tenderness	1,591	5.80 ± 0.59
Juiciness	1,591	5.00 ± 0.49
Connective Tissue	1,591	5.89 ± 0.59
Beef Flavor	1,591	2.50 ± 0.23
Painty	1,591	1.13 ± 0.17
Livery	1,591	1.10 ± 0.12

Genome-wide association

 Identify SNPs and chromosomal regions associated with palatability traits

- WBSF
- Tenderness (sensory panel)
- Juiciness (sensory panel)
- Connective tissue (sensory panel)
- Flavor (sensory panel)

SVS (SNP & Variation Suite) v8.3.4 (Golden Helix)

 Mixed Model GWAS using single locus models (EMMAX) and multi-locus models (MLMM)

GWAS in SVS – initial steps

0		Q	ualityPhenotypes + G	enotypes 50K -	Mapped WBSF	[1519]		- 🗆 🗙
File	Edit Select DNA-	Seq Genotype Numeric	RNA-Seq GenomeBrows	e Plot Scripts	Help			
çe	13 🔤 🔲 🛃 🛙	💵 🗠 🔅 🔟 💙 📕	1 🗠 39 🌌 .	X 🖸 ?				All: 2,110 x 53,46
Unsort		G 2752	G 2753	G 2754	G 2755	G 2756	WBSAVG (Quantitat	G 2.110 x 53,40
Мар	HEALTHID	Hapmap42876-BTA-23541	ARS-BFGL-NGS-115015	BTB-00011225	BTB-00011494	ARS-BFGL-NGS-46004	BTA-59258-no-rs	Hapmap5004
мар	Chromosome	1	1	1	1	1	1	1
	Position	27145992	27181523	27249385	27324745	27357510	27434665	27465
	dbSNP Strand	A/G	T/C	G/C	A/G	G/C	T/C	T/1
S	trand Versus dbSNP	same	reverse	same	same	same	reverse	reve
	Observed	A/G	A/G	G/C	A/G	G/C	A/G	A/
	GenTrain Score	0.9364	0.8837	0.7879	0.8868	0.9532	0.8531	0.88
	Strand	TOP	TOP	BOT	ТОР	вот	ТОР	то
2	20081015111597	B_B	B_B	A_A	B_B	B_B	A_A	
3	20081015111589	A_B	B_B	A_A	B_B	B_B	B_B	
4	20081015111547	B_B	B_B	A_A	B_B	B_B	A_B	
5	20081015111553	B_B	B_B	A_A	B_B	B_B	A_A	
6	20081015111577	A_A	B_B	A_A	B_B	B_B	B_B	
7	20081015111605	B_B	B_B	A_A	B_B	B_B	B_B	
8	20081015111593	A_B	B_B	A_A	B_B	B_B	A_B	
9	20081015111581	B_B	A_A	B_B	A_B	B_B	A_B	
10	20081015111601	A_B	B_B	A_A	B_B	B_B	A_B	
11	20081015111539	A_B	A_B	A_B	A_B	B_B	B_B	
12	20080502C40313	B_B	B_B	A_A	B_B	B_B	B_B	

GWAS in SVS - genotype filtering

				QualityPhenotypes +	Genotypes 50K	- Mapped -	Sheet	5 [3057]				- 🗆 🛛
File E	dit Select DNA-S	eq Genotype N	lumeric RNA-Sec	q GenomeBrowse Plot	Scripts Help							
54 C	3 🗳 🚺 🗹 🗎	🛯 🖢 🔛 🔝	👐 📕 🔤	🗟 ३१ 🗷 🗡 🔂	?						Ar	All: 2,110 x 53,465 ctive: 2,076 x 53,465
Unsort		G 4333	G 4334	G 4335	G 4336	G 4337	G	4338	G 433	9	G 4340	G 4341 ^
Мар	HEALTHID	BTB-00045786	BTB-00045751	Hapmap38948-BTA-28757	BTB-00046247	BTB-02007023	Ha	pmap42893-BTA-27908	BTB-0183	1301	BTB-01579733	BTB-01579794
	Chromosome	1	1	-	Gen	otype Filterir	nd hy l	Varker -			1	1
	Position	103926075	103950225	10	Gen	otype mitem	ig by i	in the second se			104280525	104317463
	dbSNP Strand	T/C	T/C	(No variable is	set as dependent.)					-	A/C	T/C
Stra	and Versus dbSNP	same	same	Classify all	eles by allele frequency	r C) Classif	y alleles by reference/alter	nate		same	reverse
	Observed	T/C	T/C				(Marke	er map "Reference" field rec	uired)		A/C	A/G
(GenTrain Score	0.8871	0.9151	Filter Geno	type Columns						0.9366	0.8853
	Strand	BOT	BOT		Statistics Filtering						TOP	ТОР
10	20081015111601	A_B	A_A							3_B	A_A	A
11	20081015111539	A_A	A_A	Drop	if call rate	<	• 0.9			3_B	A_A	A
12	20080502C40313	A_B	A_A	Drop	if number of alleles	>	• 2			∖_B	A_B	A
13	20080502C30221	A_B	A_A	🗹 Drop	if Minor Allele Frequenc	cy (MAF) <	• 0.0	5		∖_ B	A_B	A
14	20080502C30208	A_A	A_A	Drop	if carrier count	<	▼ 10			_B	A_B	A
15	20080502C40307	A_A	A_A							_B	A_B	A
16	20080502C30157	A_A	A_A	Hardy W	einberg Equilibrium (HW	/E) Filtering				L_A	B_B	A
17	20080502C30163	A_B	A_A	Perform	HWE filtering based on:			All	Ŧ	∖_ B	A_B	A
18	20080502C30173	A_A	A_A	Drop	if Hardy Weinberg Equ	ilibrium (HWE) P-1	/alue	< ▼ 0.001		∖_ B	A_B	A
19	20080502C30188	?_?	A_A				value			_B	A_B	A
20	20080502C30261	B_B	A_A		if Fisher's exact test fo	or HWE P-Value		< ▼ 0.001		LA.	A_A	A
21	20080502C60372	A_A	A_A	Drop	if signed HWE R (positi	ve if more homoz	ygous)	> 🔻 0.2		∖_B	A_B	A
22	20080502C40320	A_A	A_A							A_A	B_B	A
23	20080502C30276	A_B	A_A	Actions						3_B	A_A	A
24	20080502C30187	A_B	A_A	✓ Inactiv	ate genotype columns t	that meet above	criteria f	or filtering		L_A	A_B	A
25	20080502C30273	A_B	A_A	✓ Output	spreadsheet with mark	er statistics and	Drop?' c	olumns		∖_ B	A_B	A
26	20080502C30268	B_B	A_A							LA.	A_A	A
27	20080502C40314	A_B	A_A	Additional	Dutput					_B	A_B	A
28	20080502C40318	A_A	A_A	Output	-log10(Value)					3_B	A_A	A
29	20080502C60385	A_B	A_A							L_A	A_B	A
30	20080502C40302	A_B	A_A	Help	Restore Options -	Save Options 🔻		Run	Cancel	_B	A_A	A
31	20080502C60371	A_A	A_A					(d)		L_A	A_A	A
32	20080502C30191	A_A	A_A	B_B	B_B	A	A	B_B		A_A	B_B	A 🗸

GWAS for WBSF - SVS

- Mixed Model GWAS using a single locus (EMMAX) and multi-locus models (MLMM)
 - Genomic relationship matrix
 - Contemporary groups

	Additional Outputs			
Regression Mode	l(s) To Use		Correct for Additional Covariates	
	ssion (fixed effects only)		I NUMCONTG	Add Columns
Mixed Mode	el GWAS			Remove Selected
Single-locu	is mixed model GWAS (EMMAX)			
Multi-locu	is mixed model GWAS (MLMM)			Clear List
Number of s	teps to use: 10			
✓ Use Pre-	Computed Kinship Matrix (Cov. N	Natrix of Random Effects)		
		Select Sheet		
GBLU	P Genomic Relationship Matrix	Select Sheet		
spreadsheet w this analysis.	re-computed kinship matrix spre vill be computed from the genoty			
Genetic Model ar				
	used for recoding the original sp		Impute missing data as:	
Additive	ve 🔿 Dominant	Recessive	 Homozygous major allele Num 	erically as average value
	r Hemizygous Males			
Correct For	ex Column:			Select Column
Choose Se	that is hemizygous for males: X			

GWAS for WBSF – SVS – output

DUCIDANCED

				P-	Values from Single-Lo	ocus Mixed Model WB	SF [1484]	
File E	dit Select DNA-Seq Genotype Numeric	RNA-Seq GenomeBrowse	Plot Scripts Help					
दद 🖸	3 🚎 🕕 😭 🎟 🗛 🖄 📠 💙 📕	🙆 ೫ 🗷 >	?					
Unsort		R 1	R 2	R 3	R 4	R 5	R 6	R 7
Мар	Marker	P-Value	-log10(P-Value)	Regression Beta	Beta Standard Error	Expected P	-log10(Expected P)	FDR
1	Hapmap43437-BTA-101873	0.383821648810084	0.415870533264946	-0.0285368845077287	0.032761059113204	0.382716411489803	0.417122914136511	1
2	ARS-BFGL-NGS-16466	0.515419782177384	0.287838916934501	0.018682979636141	0.0287194749870717	0.51214289904382	0.290608844478641	1
3	ARS-BFGL-NGS-19289	0.0636798254424759	1.19599813574579	0.384513604774792	0.207239366901906	0.0696212432295027	1.15725822576744	0.915909379250977
4	Hapmap34944-BES1_Contig627_1906	0.785545607914954	0.104828595231531	0.0114773283735648	0.042175185831537	0.781554916798655	0.107040500402728	1
5	BTA-07251-no-rs	0.917230288158053	0.037521612726741	-0.00381395499449193	0.0366952686512595	0.915009483584599	0.0385744046798728	1
6	ARS-BFGL-NGS-98142	0.823512154836004	0.0843299863676352	0.00729278064823647	0.0326945134104316	0.820408282982343	0.0859699635701682	1
7	Hapmap53946-rs29015852	0.149964121774113	0.824012631472996	-0.0395628967966938	0.027470573428266	0.155677440800923	0.807774316433205	0.964690076491648
8	ARS-BFGL-NGS-114208	0.389176081721017	0.409853858783378	-0.0234085431879875	0.0271783613648939	0.38754619581158	0.41167652182794	1
9	ARS-BFGL-NGS-66449	0.575477852905042	0.23997138540727	-0.0162121902459932	0.0289456335028307	0.572270780782542	0.242398427897064	1
10	ARS-BFGL-BAC-32770	0.791571825152898	0.101509672270577	0.0222013840837164	0.0839993730972714	0.787108191079564	0.103965568073668	1
11	ARS-BFGL-NGS-65067	0.97693805638211	0.0101329722323896	0.00078799290569142	0.0272554627035422	0.977464265462154	0.00989911075693163	1
12	ARS-BFGL-BAC-31497	0.937666701496802	0.0279515064223586	0.010124352585938	0.129447012170112	0.935228094874954	0.0290824551547167	1
13	ARS-BFGL-BAC-32722	0.65532008905181	0.18354651840031	0.0415682827653159	0.0931088410705422	0.652754150290374	0.185250358199039	1
14	ARS-BFGL-BAC-34682	0.959078332417845	0.0181459205170035	0.00498446835454126	0.0971320462825188	0.960550243444594	0.0174799135924503	0.999960793701189
15	ARS-BFGL-NGS-3964	0.90695956665662	0.0424120738763232	0.00404998772846728	0.0346482366110295	0.903531413151874	0.0440567436881523	1
<								

P-Values from Single-Locus Mixed Model WBSF

P-Values from Single-Locus Mixed Model WBSF [1484]

- 🗆 🗙

All: 51,218 x 12

Edit	Select	DNA-Seq	Genotype	Numeric	RNA-Seq	GenomeBrowse	Plot	Scripts	Help	
100.0			los las l	1. MAR 1		a.0 🖌 💊		2		

File D.C.

Unsort		R 8	R	9	R 10	R 11	R 12
Мар	Marker	Proportion of Variance Explained		Mahal. RSS	Call Rate	Minor Allele D Frequency	Major Allele d Frequency
1	Hapmap43437-BTA-101873	0.000365880292415577		438.105054938868	0.988439306358382	0.262426900584795	0.737573099415205
2	ARS-BFGL-NGS-16466	0.000204103915236731		438.175955928754	1	0.474470134874759	0.52552986512524
3	ARS-BFGL-NGS-19289	0.00165790251263243		437.538806293878	0.979287090558767	0.183472700442696	0.816527299557305
4	Hapmap34944-BES1_Contig627_1906	3.57234001253648e-005		438.249751283844	0.986994219653179	0.197657393850659	0.80234260614934
5	BTA-07251-no-rs	5.21110014883863e-006		438.26312376943	1	0.495905587668593	0.504094412331407
6	ARS-BFGL-NGS-98142	2.40008609111442e-005		438.254888867271	0.953275529865125	0.326932794340576	0.673067205659424
7	Hapmap53946-rs29015852	0.00099955591911649		437.827336832036	0.988439306358382	0.139863547758285	0.860136452241715
8	ARS-BFGL-NGS-114208	0.000357723563513046		438.108629750985	0.991811175337187	0.416221466731423	0.58377853326857
9	ARS-BFGL-NGS-66449	0.000151304640196304		438.199096024552	0.977842003853565	0.365270935960591	0.634729064039409
10	ARS-BFGL-BAC-32770	3.3697220037987e-005		438.250639288486	0.95616570327553	0.449622166246851	0.550377833753149
11	ARS-BFGL-NGS-65067	4.03216242395033e-007		438.265230898631	0.96242774566474	0.470720720720721	0.529279279279279279
12	ARS-BFGL-BAC-31497	2.95086864521288e-006		438.264114350712	0.981695568400771	0.122914622178606	0.877085377821394
13	ARS-BFGL-BAC-32722	9.61393692351376e-005		438.223273054516	0.971579961464355	0.116261774913237	0.883738225086762
14	ARS-BFGL-BAC-34682	1.27031889107787e-006		438.264850877535	0.959537572254335	0.151104417670683	0.848895582329317
15	ARS-BFGL-NGS-3964	6.59087351229104e-006		438.262519062495	1	0.467003853564547	0.532996146435453
<							

GWAS for WBSF - SVS

Mixed Model GWAS using a single locus (EMMAX)

- Genomic relationship matrix
- Contemporary groups

Samples scanned: 2,076 Markers scanned: 51,218 Markers analyzed: 51,141 Pseudo-heritability: 0.37

Exploring data - GenomeBrowser

Exploring data - GenomeBrowser

第二人間

Exploring data - GenomeBrowser

								16	ature Lis										
insembl (enes 79, Enser	Ы																▼ Read: () ai 🔘
CI	nr <mark>Start</mark>	Stop	Gene Name	Transcript Name	CDS Start	CDS Stop	Exon Starts	Exon Stops	Strand	Exon ID	n nun	n Vers	Gene Biotype	Gene ID	ene Versio	Protein ID	otein Vers	si ernate transcrip	ot script
1 5	102715224	102729724	ENSBTAG00000	ENSBTAT00000	102715223	102729582	102715223,1027	102715467,1027	+	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	2	ENSBTAP00000	2	?	2
2 5	102722829	102726245	ENSBTAG00000	ENSBTAT00000	102722828	102726245	102722828,1027	102723177,1027	+	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	2	ENSBTAP00000	1	?	1
3 5	102726402	102729724	ENSBTAG00000	ENSBTAT00000	102726401	102729582	102726401,1027	102726486,1027	+	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	2	ENSBTAP00000	4	?	4
4 5	102894599	102923181	ENSBTAG00000	ENSBTAT00000	102894598	102923181	102894598,1029	102894917,1029	+	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	1	ENSBTAP00000	2	?	2
5 5	102940224	102966384	ENSBTAG00000	ENSBTAT00000	102940223	102966384	102940223,1029	102940296,1029	÷	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	4	ENSBTAP00000	2	?	2
65	102940224	102966384	ENSBTAG00000	ENSBTAT00000	102940223	102966384	102940223,1029	102940296, 1029	+	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	4	ENSBTAP00000	2	?	2
7 5	102968842	102991326	ENSBTAG00000	ENSBTAT00000	102968841	102991326	102968841,1029	102968957,1029	-	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	3	ENSBTAP00000	2	?	2
8 5	103032491	103060434	ENSBTAG00000	ENSBTAT00000	103032490	103060434	103032490,1030	103032618,1030	u 1	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	1	ENSBTAP00000	2	?	2
9 5	103081967	103082596	ENSBTAG00000	ENSBTAT00000	?	?	103081966	103082596	+	ENSBTAE00000	1	1	processed_pseu	ENSBTAG00000	1	7	?	?	1
10 5	103110444	103113609	ENSBTAG00000	ENSBTAT00000	103110443	103113609	103110443,1031	103110607,1031	-	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	3	ENSBTAP00000	1	?	1
11 5	103132709	103149919	ENSBTAG00000	ENSBTAT00000	103132708	103149919	103132708,1031	103132854,1031	-	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	2	ENSBTAP00000	1	?	1
12 5	103132709	103261137	ENSBTAG00000	ENSBTAT00000	103132708	103261137	103132708,1031	103132854,1031	-	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	2	ENSBTAP00000	4	?	4
13 5	103170324	103207769	ENSBTAG00000	ENSBTAT00000	103170323	103207769	103170323,1031	103170619,1031	-	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	2	ENSBTAP00000	2	?	2
14 5	103276708	103332323	ENSBTAG00000	ENSBTAT00000	103276707	103332323	103276707,1032	103276850,1032	-	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	2	ENSBTAP00000	2	?	2
15 5	103334470	103335099	ENSBTAG00000	ENSBTAT00000	?	?	103334469	103335099	+	ENSBTAE00000	1	1	processed_pseu	ENSBTAG00000	1	?	?	?	1
16 5	103375408	103417370	CD163L1	ENSBTAT00000	103375451	103417370	103375407,1033	103375597,1033	-	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	4	ENSBTAP00000	1	CD163L1-201	1
17 5	103375408	103426531	CD163L1	ENSBTAT00000	103375451	103426531	103375407,1033	103375597,1033	- 1	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	4	ENSBTAP00000	2	CD163L1-202	2
18 5	103389271	103439148	CD163L1	ENSBTAT00000	103389270	103439095	103389270,1033	103389613,1033	-	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	4	ENSBTAP00000	2	CD163L1-203	2
19 5	103458792	103460314	ENSBTAG00000	ENSBTAT00000	103458791	103460314	103458791,1034	103458943,1034	-	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	4	ENSBTAP00000	4	?	4
20 5	103530546	103546956	PEX5	ENSBTAT00000	103531697	103546254	103530545,1035	103531899,1035	-	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	5	ENSBTAP00000	2	PEX5-201	2
21 5	103530565	103547919	PEX5	ENSBTAT00000	103531697	103546254	103530564,1035	103531899,1035	- 1	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	5	ENSBTAP00000	4	PEX5-202	4
22 5	103581388	103611327	CLSTN3	ENSBTAT00000	103582113	103611068	103581387,1035	103582254,1035	2	ENSBTAE00000	1	2	protein_coding	ENSBTAG00000	5	ENSBTAP00000	5	CLSTN3-201	5
23 5	103581388	103611327	CLSTN3	ENSBTAT00000	103582358	103611068	103581387,1035	103582254,1035	e (ENSBTAE00000	1	2	protein_coding	ENSBTAG00000	5	ENSBTAP00000	4	CLSTN3-202	4
24 5	103612392	103617657	RBP5	ENSBTAT00000	103613069	103617361	103612391,1036	103612559, 1036	+	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	4	ENSBTAP00000	4	RBP5-201	4
25 5	103633960	103644323	CIRL	ENSBTAT00000	103633959	103644323	103633959,1036	103633974,1036	+	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	4	ENSBTAP00000	4	C1RL-201	4
26 5	103634595	103644323	C1RL	ENSBTAT00000	103634594	103644323	103634594,1036	103634677,1036	+	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	4	ENSBTAP00000	1	C1RL-202	1
27 5	103664843	103687826	C1R	ENSBTAT00000	103681239	103687826	103664842,1036	103664937,1036	+	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	2	ENSBTAP00000	2	C1R-201	2
28 5	103737161	103747960	C1R	ENSBTAT00000	103737216	103745018	103737160,1037	103737218,1037	+	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	4	ENSBTAP00000	4	C1R-201	4
29 5	103737177	103747996	C1R	ENSBTAT00000	103737216	103747851	103737176,1037	103737218,1037	+	ENSBTAE00000	1	1	protein_coding	ENSBTAG00000	4	ENSBTAP00000	4	C1R-202	4
30 5	103768066	103779250	C1S	ENSBTAT00000	103768508	103778083	103768065,1037	103769308, 1037	-	ENSBTAE00000	1	2	protein_coding	ENSBTAG00000	4	ENSBTAP00000	4	C1S-201	4
31 5	103841289	103847254	LPCAT3	ENSBTAT00000	103841288	103846610	103841288,1038	103841397,1038	+	ENSBTAE00000	1	2	protein_coding	ENSBTAG00000	5	ENSBTAP00000	2	LPCAT3-201	2
32 5	103847447	103853139	ENSBTAG00000	ENSBTAT00000	103847595	103853006	103847446,1038	103847709,1038	-	ENSBTAE00000	1	3	protein_coding	ENSBTAG00000	4	ENSBTAP00000	4	?	4
33 5	103853322	103857548	PHB2	ENSBTAT00000	103853381	103857548	103853321,1038	103853508, 1038	+	ENSBTAE00000	1	2	protein_coding	ENSBTAG00000	3	ENSBTAP00000	3	PHB2-201	3
34 5	103856022	103856266	snoU89	ENSBTAT00000	?	2	103856021	103856266	+	ENSBTAE00000	1	1	snoRNA	ENSBTAG00000	1	?	?	snoU89-201	1

South States

GWAS on other "tenderness" traits

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

GWAS on other palatability traits

Palatability of Beef - goals

Genome-wide association (GWAS)

2 Genomic Prediction

3 GWAS signals underlying biology

Genomic Prediction - WBSF

Correct For Gender

Choose Sex Column:

Compute Genomi	c BLUP (GBLUP)	?
Computations	Correct for Additional Covariates	
Compute GBLUP (Genomic Best Linear Unbiased Predictors) of additive genetic merits by sample and of allele subsitution effects (ASE) by marker.		Add Columns
Impute missing genotypic data as:		Remove Selected
Homozygous major allele O Numerically as average value		Clear List

Chromosome that is hemizygous for males: X					
Use Pre-Computed Genomic Relationship Matrix					
GBLUP Genomic Relationship Matrix	Select Sheet	Missing Phenotypes			
NOTE: If no pre-computed genomic relationship matrix genomic relationship matrix will be computed from the genomic relationship.		 Predict random eff Drop samples with 			notypes
			OK	Cancel	Help

Select Column

GBLUP Prediction - WBSF

26 27 28

Genomic Prediction

- Accuracy of DGV key to successful application of genomic selection
- Cross validation assess performance of prediction
- SVS: five-fold cross-validation for evaluation of predictive performance of GBLUP/BayesC for WBSF

5-fold cross-validation - WBSF

Computations			Correct for Addition	nal Covariates	
Perform k-fold cross validation on GBLUI	P and Bayes C\(С-рі	I NUMCONTG		Add Columns
Method(s)				Remove Selected	
🖌 Genomic Best Linear Unbiased Predic	ctors (GBLUP)				Clear List
Bayes C-pi					Ciedi List
🗌 Bayes C					
Bayesian Options					
Number of Iterations:	50000				
Burn-in:	0		in the second se		
Thinning:	0		Impute Missing Genoty	ypic Data As:	
Initial Pi (for Bayes C this will be the fixed value)	0.5		O Homozygous	major allele 💿 Numeric	ally as average value
Correct For Gender	5		Stratify Folds by		
			C kmeangrpLet		Select Column
Choose Sex Column:		Select Column			
Chromosome that is hemizygous for mal	es: X		K-Fold Options		
Use Pre-Computed Genomic Relation	ship Matrix		Number of Folds	5	
GBLUP Genomic Relationship Matr	1.52	Select Sheet	Number of Iterations	1	
	***		Spreadsheet Options		
DTE: If no pre-computed genomic relati nomic relationship matrix will be comput				te spreadsheets with results	s for each fold?

Cross-validation - WBSF

GBLUP Summary Statistics - Iteration 1

× 🖬 ?

Summary Statistics

Overall

Pearson's Product-Moment Correlation Coefficient:	0.4097671933
Residual Sum of Squares:	1034.749436761
Total Sum of Squares:	1242.205972934
R-Squared:	0.1670065518
Root Mean Square Error:	0.7059987380
Mean Absolute Error:	0.5424411481

Fold 1

Pearson's Product-Moment Correlation Coefficient:	0.4015587129
Residual Sum of Squares:	198.6182286880
Total Sum of Squares:	236.5105178469
R-Squared:	0.1602139706
Root Mean Square Error:	0.6893208444
Mean Absolute Error:	0.5236755179

Fold 2

Pearson's Product-Moment Correlation Coefficient:	0.4448843677
Residual Sum of Squares:	195.7270701054
Total Sum of Squares:	241.8604776538
R-Squared:	0.1907438867
Root Mean Square Error:	0.6859283962
Mean Absolute Error:	0.5213248258

Fold 3

Pearson's Product-Moment Correlation Coefficient:	0.3887937612
Residual Sum of Squares:	228.8890867620
Total Sum of Squares:	267.1873564337
R-Squared:	0.1433386302
Root Mean Square Error:	0.7426573692
Mean Absolute Error:	0.5805400467

		GBLUP - ASE - Iteration 1 [2147	1]		×
File E	dit Select DNA-Seq Genotype Numeric	RNA-Seq GenomeBrowse Plot Scripts	Help		
sq 🕻	3 📪 🕕 👩 💷 k 🖉 💷	📙 🗠 ೫ 🗷 🗙 🖸 ?			: 51,218 : 51,218
Unsort		R 1	R 2	R 3	
Map	Marker	Allele substitution effect (ASE)	Absolute value of ASE	Normalized Abs ASE	
1	Hapmap43437-BTA-101873	-0.000368841373186229	0.000368841373186229	26.0085477384702	
2	ARS-BFGL-NGS-16466	0.000173913631369154	0.000173913631369154	12.2633774643051	
3	ARS-BFGL-NGS-19289	0.000107101214065017	0.000107101214065017	7.55215450695027	
4	Hapmap34944-BES1_Contig627_1906	6.57063929251151e-005	6.57063929251151e-005	4.6332325529346	
5	BTA-07251-no-rs	-1.05547432562128e-005	1.05547432562128e-005	0.744259087518099	
6	ARS-BFGL-NGS-98142	2.37371645487265e-005	2.37371645487265e-005	1.67380674247128	
7	Hapmap53946-rs29015852	-0.000650784019124274	0.000650784019124274	45.8895028033669	
8	ARS-BFGL-NGS-114208	-0.000455347554385593	0.000455347554385593	32.1084603484919	
9	ARS-BFGL-NGS-66449	-0.000191744079108326	0.000191744079108326	13.5206769023169	
10	ARS-BFGL-BAC-32770	4.8994743326343e-005	4.8994743326343e-005	3.45482425067834	
11	ARS-BFGL-NGS-65067	-0.000101175402819359	0.000101175402819359	7.13430077394715	
12	ARS-BFGL-BAC-31497	1.87061319691707e-005	1.87061319691707e-005	1.31904759522911	

Accuracy of gEBV

Genetic correlation between gEBV and phenotype.

Bivariate animal model in Wombat

Program WOMBAT: Estimates of covariance components Genetic Correlation gEBV and WBSF "MUV 2" Analysis type Data file : "gEBV-wbsf.dat" Pedigree file : "PedFile.dat" Parameter file : "rgGBVwbsf.par" No. of traits = 2 qEBV WBSF No. of records = 4152 2076 2076 No. of parameters = 6 Maximum log L = 2008.335 ***** Estimates for RE 1 "animal" Accuracy: No. of levels 4121 = Covariance structure = NRM Order of fit = 2 0.59 Covariance matrix 1 0.69448E-01 2 0.36425E-01 0.55370E-01 Eigenvalues of covariance matrix Value 0.10 0.03 79.72 20.28 (%) Matrix of correlations and variance ratios 1 0.9857 0.5874 2 0.1519 Covariances & correlations & approx. sampling errors 4 COVS A 1 1 0.6944E-01 0.5609E-02 0.986 .055 vrat 5 COVS A 1 2 0.3642E-01 0.7192E-02 corr 0.587 0.107 0.5536E-01 0.1644E-01 vrat 0.152 0.044 6 COVS A 2 2

Palatability of Beef - goals 3 GWAS signals — underlying biology

Palatability trait

8-10 individual traits (sub-phenotypes):

• 50,000 SNP effects for each one on >2,000 animals

Warner-Bratzler Shear Force

Connective Tissue

Off-flavors: painty/fishy, livery/metallic

Tenderness

Beef Flavor

- Systems biology: integration of data sets
 - Holistic view of the system key players can emerge

Gene network theory: use SNP association data to guide the inference of gene regulatory networks

Association Weight Matrix (Fortes 2010) multivariate view of GWAS using PCIT (partial correlation and information theory Reverter & Chan 2008)

Network Analysis (Palatability)

• Partial Correlation Information Theory (Reverter and Chan, 2008)

- Significant SNPs correlated among multiple sub-phenotypes are important for regulating the overall phenotype
 - Optimized to handle SNPs and genomic windows

Network Analysis (Palatability)

Network Visualization

SAPS3: modulates protein phosphatase catalytic subunits

CAPN1: modulates proteolysis of cytoskeletal remodeling and signal transduction.

CHI3L2: Involved in cartilage biogenesis.

CA10: Catalyzes AR: reversible hydration of carbon dioxide in various processes.

GPHN: Involved in membrane proteincytoskeleton interactions.

Conclusions

- Palatability or eating satisfaction important for the long-term sustainability of beef industry
- Collection of palatability phenotypes on large numbers of animals is still problematic
 - Findings focused on QTL detection rather than genomic prediction
- New methods and approaches to move from SNP signals closer to functional variants

Acknowledgments

- Justin Buchanan
- Deb VanOverbeke
- Gretchen Hilton
- Andrea Sexten
- Andrea Garmyn
- Lindsay King
- Jessica Neal
- Connie Underwood

Iowa State University

- Jim Reecy
- Dorian Garrick
- James Koltes
- Mahdi Saatchi
- Don Beitz
- Richard Tait

University of Florida

• Mauricio Elzo

- Dwain Johnson
- Mesfin Gobena

USDA - MARC

• John Pollak

UF UNIVERSITY of FLORIDA

Financial Support

- Zoetis Animal Genetics
- OSU TIP FY08
- Florida Beef Council

Questions?

