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Packages
Core Features

 Powerful Data Management

 Rich Visualizations

 Robust Statistics

 Flexible

Applications

 Genotype Analysis

 DNA Sequence Analysis

 CNV Analysis

 RNA-seq Differential 

Expression

 Family Based Association

SNP & Variation Suite  (SVS)



Overview

Genomic prediction uses: 

- genetic information to predict the phenotype or trait for the 

individuals

- Phenotypic (trait) data for a subset or all of the individuals. 

- The contribution of each genetic loci to build the model

- A single mixed model regression equation to solve for:

- The estimated breeding value (EBV) of individuals

- The allele substitution effect (ASE) for genetic loci

Training and validation can be used to gauge the 

accuracy of the model
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Case 1: Predict EBV for all individuals

 Use all individuals as the training set

 Identify individuals with the highest EBV to carry forward in breeding 

programs

OR ?



Case 2: Predict EBV for a subset of individuals

 Training set includes all individuals with known phenotype information

 Phenotype and EBV information is predicted for individuals missing 

phenotype information

OR ?



Case 3: Gauge accuracy of model using 
Training/Validation

Randomly choose a subset of individuals to use to train 

the model

Set the remaining individuals to have a missing 

phenotype (validation set)

Build the model based on the training set and solve for 

the EBVs (random effects) and phenotypes for all 

individuals

Compare the actual phenotypes to the predicted 

phenotypes or EBVs for the validation set



Case 4: Identify the loci that have the greatest effect 
on the model 

Use all individuals with phenotype data as the training 

set

Examine the allele substitution effect of each loci

 Identify the loci with the greatest normalized ASE (allele 

substitution effect) and the most influential loci on the 

model to predict the phenotype or EBVs
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Definitions

 Training set:

- Subset of individuals used to compute the variance components and 

parameters of the linear mixed model using known phenotype information

 Validation set:

- Subset of individuals used to predict the y value or phenotype values based on 

previously defined variance components and parameters of the linear mixed 

model. 

- Usually in this case the phenotype information is known for these individuals 

and can be compared against the predicted values.



Selecting individuals for Training/Validation Sets

 Select the proportion of individuals to use for training:

- The larger the proportion of individuals in the training set vs the 

validation set the more accurate the predictions will be

 Randomly choose the individuals for training 

 The remaining individuals will be the validation set

 If using categorical covariates, try to select the same proportion 

from each category



Example 1: No Covariates

 Choose proportions to be 80% Training / 20% Validation



Example 2: One Covariate (4 categories)

 Choose proportions to be 80% Training / 20% Validation for each of the 4 

categories
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Highlights of GBLUP Method

 Formula

 Input Data

 Data Preparation

 Output of GBLUP



GBLUP Formula

 Mixed Model Equation:
𝑦 = 𝑋𝑓𝛽𝑓 + 𝑢 + ϵ

𝑦 is a 𝑛 × 1 vector of observed phenotypes for 𝑛 individuals

𝑋𝑓 is a 𝑛 × 𝑓 matrix of fixed effects for 𝑓 fixed effects

𝛽𝑓 is a 𝑓 × 1 vector of the coefficients of the fixed effects

𝑢 is a 𝑛 × 1 vector of the additive genetic merits (genomic breeding 

values)

𝜖 is a 𝑛 × 1 vector of random errors

Where:

𝑢 = 𝑀𝛼 and we assume 𝐸 𝛼 = 0 and 𝑉𝑎𝑟 𝛼 = 𝐼𝜎𝑀
2

𝑀 is a 𝑛 × 𝑚 matrix of minor allele counts per individual per 

(𝑚) loci and 𝛼 is a 𝑛 × 𝑚 vector of allele substitution effects 

per loci



GBLUP Genomic Relationship Matrix

 Under the above assumptions:

𝑉𝑎𝑟 𝑢 = 𝑉𝑎𝑟 𝑀𝛼 = 𝑀𝑉𝑎𝑟 𝛼 𝑀′ = 𝑀𝑀′𝜎𝑀
2

 Under Hardy-Weinberg equilibrium the sum of the variances would be:

𝜙 = 2  

𝑘=1

𝑚

𝑝𝑘𝑞𝑘

 Thus giving the normalized variance matrix:

𝐺 =
𝑀𝑀′

𝜙

 We can then show that 𝑉𝑎𝑟 𝑢 = 𝜎𝐺
2𝐺 where G is the GBLUP Genomic 

Relationship Matrix (a kinship matrix)



GBLUP Input Data - Phenotype

 Phenotype:

- At least two non-missing values per categorical covariate group



GBLUP Input Data – Genotype data

 Genotype data:

- Formatted either in minor allele frequency counts (0,1,2) or genotypes (A_A, A_B, B_B)



GBLUP Input Data – Genetic Position Information

 Chromosome & position information needed to identify non-autosomal 

loci



Compute GRM

 Filter genetic data to remove:

- Non-autosomal loci

- Loci with minor allele frequency < 0.05 

- Loci in Linkage-Disequilibrium

- Loci with a poor call rate (e.g. < 0.85)

𝐴_𝐴 ⋯ 𝐴_𝐵
⋮ ⋱ ⋮

𝐵_𝐵 ⋯ 𝐵_𝐵 𝑛×𝑚

→
0 ⋯ 1
⋮ ⋱ ⋮
2 ⋯ 2 𝑛×𝑚

→
1.01 ⋯ 0.027
⋮ ⋱ ⋮

0.027 ⋯ 0.998 𝑛×𝑛

= 𝐺𝑅𝑀



Output of GBLUP

Per individual Genomic Estimated Breeding Values 

(Sample-wise random effects)

Per marker allele substitution effects

Pseudo-heritability 𝑝ℎ =  𝜎𝐺
2/𝑉𝑎𝑟(𝑦)

P-value of the model 𝑃 𝑋 > −2 𝑙0 − 𝑙1 , 𝑋 ~𝜒1
2

Genetic component of variance 𝑉𝑔  𝜎𝐺
2

Error component of variance 𝑉𝑒  𝜎𝑒
2



GBLUP

 Uses genomic information to infer 

the relationships between 

individuals

 Can make predictions without 

knowing pedigree structure

 Can deal with population sub-

groups without needing to perform 

meta-analysis

ABLUP

 Uses pedigree structure to explicitly 

define the relationships between 

individuals

 Can be more accurate if the 

pedigree information is known for all 

individuals

 Can be more accurate if within a 

family the degrees of relatedness 

are fairly high

GBLUP versus Pedigree-based BLUP 
(ABLUP)



GBLUP vs ABLUP Phenotype Predictions for small 
Pedigrees

All phenotypes known Training & Validation (80 / 20)



Demonstration

[DEMONSTRATION]



Add-On Scripts Used in the Demo

 Select Random Subset by Category

 Create Pseudo Marker Mapped Spreadsheet

www.goldenhelix.com/SNP_Variation/scripts/index.html

http://www.goldenhelix.com/SNP_Variation/scripts/index.html


Conclusion

 Genomic prediction using GBLUP can provide

- The Estimated Breeding Value

- Influential Loci for the phenotype

 Genomic prediction can help breeders and researchers make decisions

- Which animals are likely to pass on their desirable traits

- Which loci could be used for a targeted assay for diagnostic purposes

 While other tools are available for Genomic Prediction, SVS combines

- Data management,

- Genomic prediction, and

- Visualization

in one powerful package



Future Improvements

 New genomic prediction methods including Bayes C & Bayes Cπ

 Easier expansion/application of trained models on new datasets

 Ability to revise models with new information

 Have a request? Let us know!



Data Obtained From:

 International Sheep Genomics Consortium 

(www.sheephapmap.org)

- Provided access to the Sheep HapMap SNP 50k data on 

request

data(wheat) from library(BLR) in R [Pérez, 2010]

http://www.sheephapmap.org/
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Questions or 

more info:

 Email 

info@goldenhelix.com

 Request an evaluation of 

the software at 

www.goldenhelix.com

mailto:mcelroy@goldenhelix.com
http://www.goldenhelix.com/
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