

Custom Family Workflows

VOISEQ

May 11th, 2016

Jami Bartole Senior Field Application Scientist

Questions during the presentation

Use the Questions pane in your GoToWebinar window

3 Trio plus Unaffected Sibling Workflow

Golden Helix is a global bioinformatics company founded in 1998.

We are cited in over 1000 peer-reviewed publications

Over 350 customers globally

When you choose a Golden Helix solution, you get more than just software

- REPUTATION
- TRUST
- EXPERIENCE

- INDUSTRY FOCUS
- THOUGHT LEADERSHIP
- COMMUNITY

- TRAINING
- SUPPORT
- RESPONSIVENESS

- TRANSPARENCY
- INNOVATION and SPEED
- CUSTOMIZATIONS

VarSeq Suite

- VCF Import
- Variant and Gene Annotations
- Various Algorithms
- Filter Variants
- Flag Variants
- Customized Reports (HTML, PDF, etc.)
- Automate Workflow
- High-Throughput Analysis

- Organize Samples into Projects
- Projects as Variant Frequency Annotations
- Centralized VSReports Hosting
- Scalable Technology
- Multiple Interfaces

Sample Data for our Custom Family

- Family was simulated from the 1000 Genomes Vietnamese (KHV) related samples using the VN049 trio and the VN056 sibling pair.
- Family formed with two affected daughters and one unaffected son.
- BAM files and VCF files available for all five samples
 - Downloaded Illumina Exome Alignment BAM files from the 1000 Genomes Phase 3 Project
 - GATK was used for variant calling

Phenotype for the Affected Samples

HYPOHIDROTIC ECTODERMAL DYSPLASIA

What is Hypohidrotic Ectodermal Dysplasia?

Other Names: Anhidrotic ectodermal dysplasia, Christ-Siemens-Touraine syndrome

Characteristics of Hypohidrotic Ectodermal Dysplasia

Hypohidrotic ectodermal dysplasia (HED) is a rare genetic condition characterized by a reduced ability to sweat, missing teeth, and fine sparse hair. Individuals affected by HED share a similar facial appearance with thin, dark skin beneath the eye with extra folds or wrinkles, a depressed "saddle" nose, small narrow jaw, and small pointed teeth. Eruption of the teeth may be delayed, or only a few teeth may erupt. Additional features include dry eyes, eczema, asthma, ear wax impaction, dry nasal concretions, respiratory illness, sinusitis, or sparseness of saliva. Nails, facial hair in males, and the appearance of pubic hair in adolescence are normal. With the exception of heat intolerance, general health and overall development, including intelligence, is within normal limits.

- HED may be inherited in one of 3 patterns: X-linked recessive (95%), autosomal recessive or autosomal dominant (5%)
- Changes or mutations in the EDA, EDAR, EDARADD, and WNT10A genes are most commonly associated with HED. These genes tell the body to make proteins that are needed early in life (before birth and shortly after) for the normal development of sweat glands, teeth, hair, skin, and other mucous glands.
- These four genes account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases

References:

- <u>http://nfed.org/index.php/about_ed/hypohidrotic-ectodermal-dysplasia</u>
- <u>http://rarediseases.org/rare-diseases/hypohidrotic-ectodermal-dysplasia/#affected-populations</u>
- http://www.ncbi.nlm.nih.gov/pubmed/17354266

Quad Analysis Workflow

Mother, Father and Two Affected Siblings

 Using Variant Sets to look at the combined set of de Novo candidate variants between the two daughters.

- Using a custom Filter Chain to identify common variants between the two affected daughters.
 - de Novo Candidates
 - Compound Heterozygous Candidates

HPO Terms For Variant Sites

HP:0007607: hypohidrotic ectodermal dysplasia

Group by Genes	HED PhoRank					
Gene Names	HED Gene Rank	HED Gene Score	HED Path			
A 1BG	0.343972	3.07775e-006	A1BG, GO:0008150 (biological_process), GO:0050789 (regulati			
A1CF	0.397163	3.82478e-006	A1CF, GO:0005737 (cytoplasm), EDARADD, HP:0007607 (Hyp			
A2M	0.241135	1.91239e-006	A2M, GO:0048863 (stem cell differentiation), GO:0030154 (cell			
A2ML1	0.765957	0.00086194	A2ML1, HP:0011354 (Generalized abnormality of skin), HP:000			

Prioritize variants using PhoRank to be included in a custom Clinical Report!

3 Trio plus Unaffected Sibling Workflow

Mother, Father, Affected Daughter and Unaffected Son

 Custom template creating separate sample specific filter cards for each child

🔽 de Novo	3 √
Mendel Error (HG02046) is de Novo Allele	< □
	929
VIII NOT(Mendel Error (HG02067) is de Novo Allele)	∢ □
	572
	572

 Inverting filter cards to remove variants present in unaffected sibling

 Using Count Allele algorithm to restrict the number of heterozygous calls for each variant

GOLDEN HELIX

Accelerating the Quest for Significance

3 Trio plus Unaffected Sibling Workflow

Affected Sibling Pair Workflow

- Using Genotype Zygosity Algorithm to find shared "de Novo" candidate variants
- Using Count Alleles by Gene Algorithm to find Shared "Compound Het" candidate regions

JOLDEN HEI

Variant Sites		CADD Scores 1.3				
Ref/Alt	Ref/Alt	Raw Score	PHRED Score	Estimated?		
C/T	C/T	-0.195452	1.122	False		
С/Т	C/T	3.66079	23.2	False		
T/A	T/A	7.00174	33	False		
A/G	A/G	2.03281	16.42	False		
C/T	C/T	-2.06069	0.001	False		
T/C	T/C	0.760341	9.216	False		
G/A	G/A	-0.751712	0.055	False		
C/G	C/G	-1.43082	0.003	False		
C/T	C/T	0.35293	6.194	False		
T/C	T/C	-1.92604	0.001	False		
	Ref/Alt C/T C/T T/A A/G C/T T/C G/A C/G C/T T/C	Ref/Alt Ref/Alt Ref/Alt Ref/Alt C/T C/T C/T C/T C/T C/T T/A T/A A/G A/G C/T C/T T/C T/C T/C T/C G/A G/A C/G C/G C/G C/G C/G C/G C/T C/G C/T C/G	Ref/Alt CADD Score Ref/Alt Ref/Alt Raw Score C/T C/T -0.195452 C/T C/T 3.66079 T/A T/A 7.00174 A/G A/G 2.03281 C/T C/T 6.01904 T/A T/A 7.00174 A/G A/G 2.03281 C/T C/T 0.760341 G/A G/A 6.0751712 C/G C/G -1.43082 C/T C/T 0.35293 T/C T/C 1.92604	Ref/Al CADD Scores 1.3 Ref/Al Raw Score PHRED Score C/T C/T -0.195452 1.122 C/T C/T 3.66079 2.32 C/T C/T 3.66079 2.32 T/A T/A 7.00174 3.3 C/T C/T 2.03281 16.42 C/T C/T 2.06069 0.001 T/C T/C 0.760341 9.216 G/A G/A -0.751712 0.055 G/A G/A -0.751712 0.003 C/T C/T 0.35293 6.194 T/C T/C -1.92604 0.001		

Two Affected Daughters

• Using Custom template to set sample specific filters

🔽 de Novo	A 1	Compound Het	× 1
Zygosity (HG02046) is Heterozygous	▲ □	📝 # Het (HG02046) > 2	* 🗆
	580		281
Zygosity (HG02026) is Heterozygous	₹ □		* 🗆
	491		252
	491		252

Prioritize variants using CADD annotation (Coming SOON to a VarSeq near you!)

 CADD provides pre-computed scores for all possible 8.6 billion single-letter substitutions, as well as 20 million previously observed indels. For novel indels, the score is estimated using scores from flanking or deleted bases

Summary

- Quad Workflow
 - Used Variant Sets to create a multi-sample VCF file, which includes de Novo Candidate variants present in either affected sample
 - Setting sample specific filter cards created a custom filter chain for de Novo and Compound Heterozygous Gene candidates in common between the two affected samples
 - Prioritized variants using PhoRank to be added to customized Clinical Report.
- Trio plus Unaffected Sibling Workflow
 - Used the ability to invert filter cards to exclude de Novo variants in the unaffected sample
 - Used Count Alleles algorithm to restrict the number of heterozygous calls for each variant position, which excluded hets present in the unaffected sample
- Two Affected Siblings Workflow
 - Used Genotype Zygosity to identify possible de Novo variants
 - Used Count Alleles by Gene to identify possible Compound Het genes
 - Looked at prioritizing variants based on new CADD annotation.

Questions or more info:

- Email info@goldenhelix.com
- Request an evaluation of the software at <u>www.goldenhelix.com</u>

