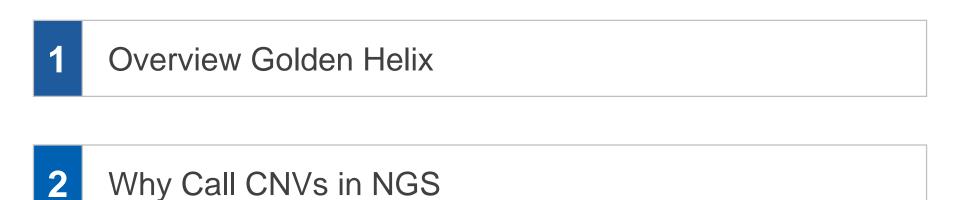
Getting More from your NGS Data: CNV Calling on Target Regions

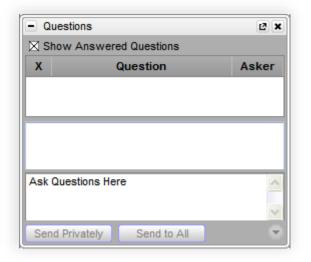
October 12, 2016


Gabe Rudy VP Product & Engineering

Dr. Nathan Fortier Senior Software Engineer & Field Application Scientist

3 Method and Demo

4 Availability and Roadmap



Questions during the presentation

Use the Questions pane in your GoToWebinar window

F

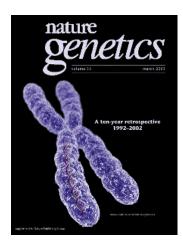
Golden Helix is a global bioinformatics company founded in 1998.

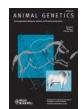
Filtering and Annotation Single Sample CNV-Analysis Clinical Reports Pipeline: Run Workflows

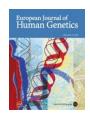
Variant Warehouse Centralized Annotations Hosted Reports Sharing and Integration

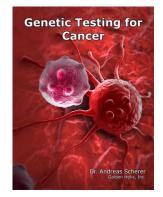
GWAS Genomic Prediction Large-N-Population Studies RNA-Seq Large-N CNV-Analysis

Over 300 customers globally




Cited in over 1000 peer-reviewed publications





When you choose a Golden Helix solution, you get more than just software

- REPUTATION
- TRUST
- EXPERIENCE

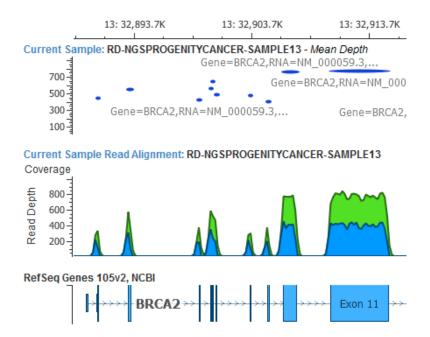
- INDUSTRY FOCUS
- THOUGHT LEADERSHIP
- COMMUNITY

- TRAINING
- SUPPORT
- RESPONSIVENESS

- TRANSPARENCY
- INNOVATION and SPEED
- CUSTOMIZATIONS

Why Call CNVs on your Gene Panels?

Gene Panels in Clinical Use

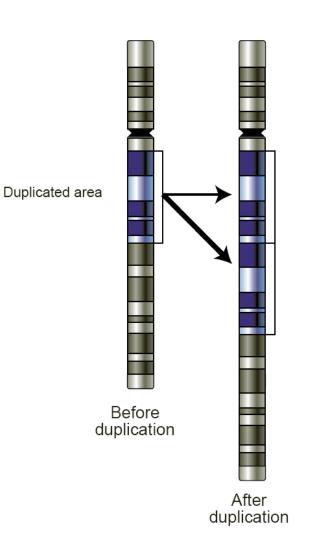

- Add value to existing workflow

Precision

 NGS provides the precision to call singleexon events that can be missed by wholegenome micro-arrays (CMAs)

But Challenging (Coverage Variable)

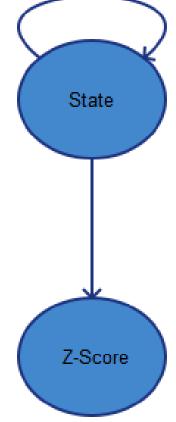
- Variation is systematic to sequencing kit
- Can be overcome with repo of reference samples
- Even with false-positives, very few to review



CNV Detection

CNV detection involves:

- Normalization
- Data Correction
- Classification
- Several approaches exist for each step
- All approaches rely on coverage information



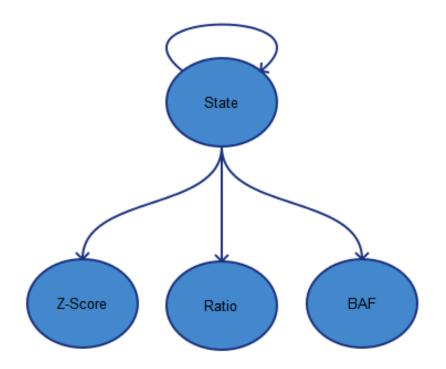
Thresholding

- Combine *multiple measures* using logical operators to determine state

Hidden Markov Models

- Markov process with hidden state
- Use a *single metric* (such as coverage "Z-Score") as evidence for hidden CNV state
- Call CNVs by finding most probable assignment to hidden state

Classification


Dynamic Bayesian Networks

Combine the best of both worlds

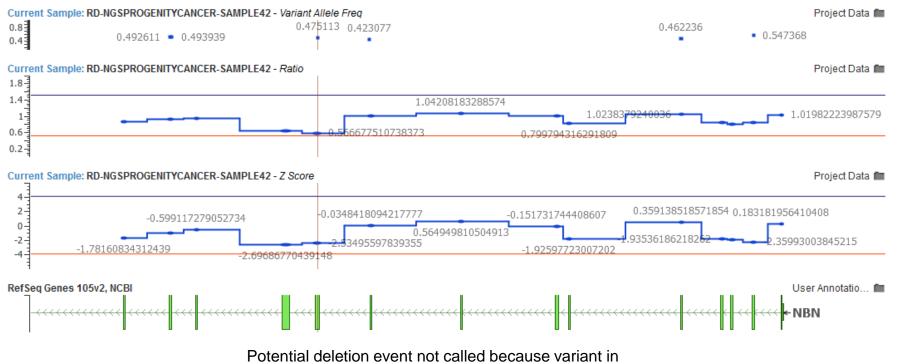
- HMMs cannot easily incorporate multiple evidence metrics
- Dynamic Bayesian Networks overcome this limitation

Dynamic Bayesian Networks

- Directed graph in which:
 - Nodes represent random variable
 - Edges represent conditional dependencies
- Each Node encodes a probability distribution conditioned on its parents

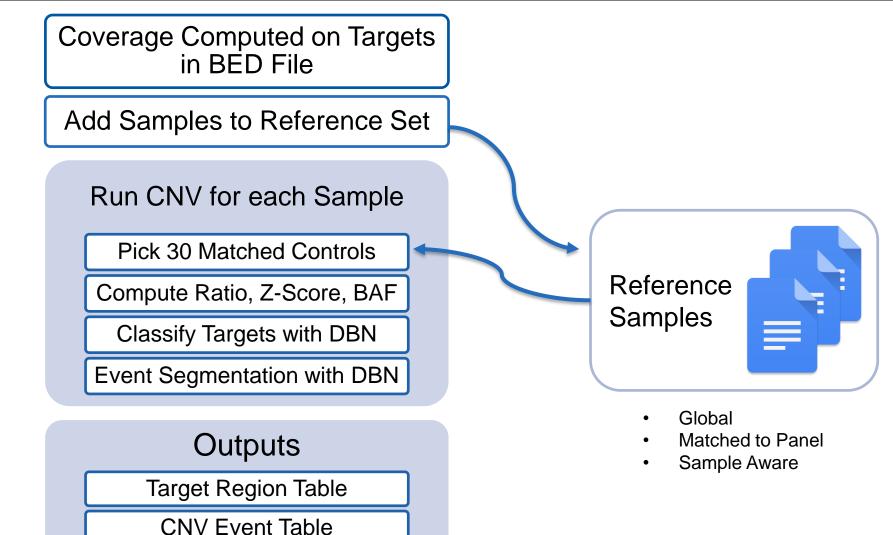
B Allele Frequency

Already in VarSeq:


- VarSeq maps target regions to containing variants
- The Variant Allele Frequency field is automatically computed on import
- Provides supporting evidence:
 - For duplication
 - ratios like 1/3, 2/3 etc
 - Against deletions
 - Any non 0 or 1 ratio
 - Reduce FP deletion calls

This single-target duplication is called with higher probabilities due to the 0.33 BAF of containing variant

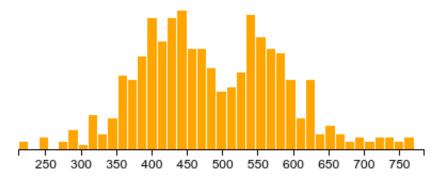
BAF Help Reduce False-Positives



target has ~0.5 Variant Allele Frequency

CNV Calling in VarSeq

Sample Summary Table


Benchmarking Data

- Samples cover 549 target regions in 31 cancer genes
- 91 of these regions fall within CNV events, including heterozygous deletions and duplications
- Algorithm was run over 48 of these samples
- All 144 samples were used as controls
- Experiments illustrate effect of the CNV probability on
 - Sensitivity (true positive rate)
 - Precision (positive predictive value)

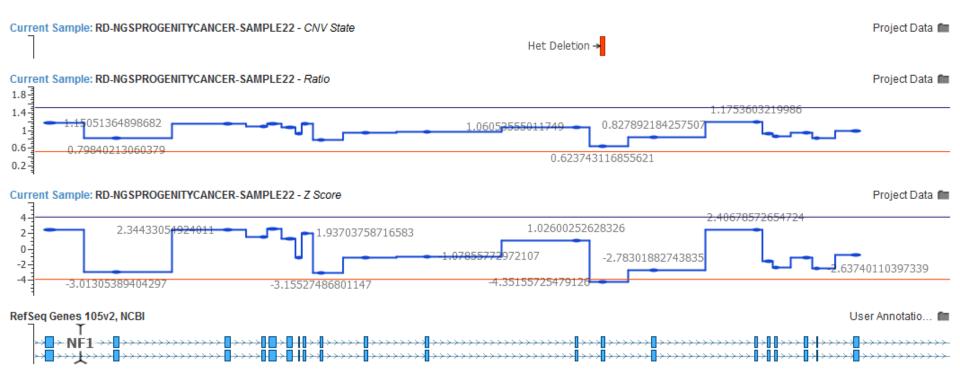
PREVENTION GENETICS

DISEASE PREVENTION THROUGH GENETIC TESTING

Average Read Depth of Samples

Performance as CNV probability is adjusted

P(CNV)	ТР	FP	TN	FN	Sens.	Prec.
1E-12	84	31	26345	7	92.3%	73.0%
1E-10	87	43	26348	4	95.6%	66.9%
1E-8	89	51	26350	2	97.8%	63.6%
1E-6	91	63	26352	0	100%	59.1%



Flagging Events

Low quality events can be flagged if

- Low Controls Depth: The mean of the matched controls read depth is exceptionally low
- High Controls Variation: The variation of the matched controls read depth was high
- Within Regional IQR: The cannot be differentiated from the noise of local region
- Filtering flagged events improves precision

Performance excluding flagged events

P(CNV)	ТР	FP	TN	FN	Sens.	Prec.
1E-12	82 (2)	1 (30)	26343	9	90.1%	98.8%
1E-10	85 (2)	3 (40)	26346	6	93.4%	96.6%
1E-8	87 (2)	5 (46)	26348	4	95.6%	94.6%
1E-6	88 (3)	9 (54)	26539	3	96.7%	90.7%

Availability and Roadmap

Early Access Now

- Part of VarSeq Clinical w/ VSReports
- Being validated in clinical workflows
- Will be in upcoming VarSeq 1.4.2

Validate Your Workflows

- Need reference samples
- Validate against known CNVs or orthogonal assay

Exomes Upcoming

- Say strategy will scale to exomes
- Exomes have extreme regional effects
- May require additional normalization, regional knowledge and QC flags

¢	P	Golden Lat 203 Enterpri Bozeman, 5 Phone: 406 Fax: 405 55	ise Blvd 9715 587 8137			Provi Phys Instit Case	ution	nation Dr. Leonar Enterprise SD123		
/										
Patient Inf	ormation			Sa	ample Informa	ation				
Name		IGSPROGEN	NITYCANCER		imple Site	Blood		wg. Read De		16
Gender	Male	PLE 13			ollection Met			Receipt Date	10/3/20	
Date of Bir		/2016		Pa	inel Coverage	99.73%	R	Report Date	10/11/2	016
u	1234									
Results										
Positive:	Mutations with	n an establish	somatic link	detected.						
Affected G	onos									
Anected C	benes									
APC	ATM	BARD1	BMPR1A	BRCA1	BRCA2	BRIP1	CDH1	CDK4	CDKN2A	CHEK2
APC (0)	ATM (0)	BARD1 (0)	BMPR1A (0)	BRCA1 (0)	BRCA2 (1)	BRIP1 (0)	CDH1 (0)	CDK4 (0)	CDKN2A (0)	СНЕК2 (0)
(0)										
	(0)	(0)	(0)	(0)	(1)	(0)	(0)	(0)	(0)	(0)
(0)	(0)	(0) MEN1	(0) MLH1	(0) MSH2	(1) MSH6	(0) <i>MUTYH</i>	(0)	(0)	(0) PALB2	(0)
(0)	(0)	(0) MEN1	(0) MLH1	(0) MSH2	(1) MSH6	(0) <i>MUTYH</i>	(0)	(0)	(0) PALB2	(0)
(0) EPCAM (0)	(0) <i>KLLN</i> (0)	(0) MEN1 (0)	(0) MLH1 (0)	(0) MSH2 (0)	(1) MSH6 (1)	(0) <i>MUTYH</i> (0)	(0) NBN (0)	(0) NF1 (0)	(0) PALB2	(0)
(0) EPCAM (0) POLD1 (0)	(0) <i>KLLN</i> (0) <i>POLE</i> (0)	(0) MEN1 (0) PTEN	(0) <i>MLH1</i> (0) <i>RAD51C</i>	(0) MSH2 (0) RAD51D	(1) MSH6 (1) RET	(0) <i>MUTYH</i> (0) <i>STK11</i>	(0) <i>NBN</i> (0) <i>TP53</i>	(0) NF1 (0) VHL	(0) PALB2	(0)
(0) EPCAM (0) POLD1 (0) Primary Fi	(0) <i>KLLN</i> (0) <i>POLE</i> (0)	(0) MEN1 (0) PTEN	(0) MLH1 (0) RAD51C (0)	(0) MSH2 (0) RAD51D	(1) MSH6 (1) RET	(0) <i>MUTYH</i> (0) <i>STK11</i>	(0) <i>NBN</i> (0) <i>TP53</i>	(0) NF1 (0) VHL	(0) PALB2	(0) PMS2 (0)
(0) EPCAM (0) POLD1	(0) <i>KLLN</i> (0) <i>POLE</i> (0) ndings	(0) MEN1 (0) PTEN (1) Varia	(0) MLH1 (0) RAD51C (0)	(0) MSH2 (0) RAD51D (0)	(1) MSH6 (1) RET (1)	(0) <i>MUTYH</i> (0) <i>STK11</i>	(0) <i>NBN</i> (0) <i>TP53</i>	(0) NF1 (0) VHL (0)	(0) PALB2 (0)	(0) PMS2 (0)
(0) EPCAM (0) POLD1 (0) Primary Fi	(0) <i>KLLN</i> (0) <i>POLE</i> (0) indings Type	(0) MEN1 (0) PTEN (1) Varia 4 exc	(0) MLH1 (0) RAD51C (0) ant on duplication	(0) <i>MSH2</i> (0) <i>RAD51D</i> (0) spanning 8,4	(1) MSH6 (1) RET (1)	(0) MUTYH (0) STK11 (0)	(0) <i>NBN</i> (0) <i>TP53</i>	(0) <i>NF1</i> (0) <i>VHL</i> (0) Exon	(0) PALB2 (0) Pathogeni	(0) PMS2 (0) city ogenic
(0) EPCAM (0) POLD1 (0) Primary Fi Gene BRCA2	(0) <i>KLLN</i> (0) <i>POLE</i> (0) indings Type CNV	(0) <i>MEN1</i> (0) <i>PTEN</i> (1) Varia 4 exc is NM_	(0) <i>MLH1</i> (0) <i>RAD51C</i> (0) ant on duplication 000179.2:c.20	(0) MSH2 (0) RAD51D (0) spanning 8,6 633T>C(NP.	(1) MSH6 (1) RET (1) 812bp	(0) MUTYH (0) STK11 (0) al878Ala)	(0) <i>NBN</i> (0) <i>TP53</i>	(0) <i>NF1</i> (0) <i>VHL</i> (0) Exon 8-12	(0) PALB2 (0) Pathogeni Likely Patho	(0) PMS2 (0) city ogenic
(0) EPCAM (0) POLD1 (0) Primary Fi Gene BRCA2 MSH6 RET	(0) <i>KLLN</i> (0) <i>POLE</i> (0) Indings Type CNV Heterozygou Heterozygou	(0) MEN1 (0) PTEN (1) Varia 4 exc is NM_ is NM_	(0) <i>MLH1</i> (0) <i>RAD51C</i> (0) ant on duplication 000179.2:c.20	(0) MSH2 (0) RAD51D (0) spanning 8,6 633T>C(NP.	(1) MSH6 (1) RET (1) 812bp _000170.1:p.Va	(0) MUTYH (0) STK11 (0) al878Ala)	(0) <i>NBN</i> (0) <i>TP53</i>	(0) <i>NF1</i> (0) <i>VHL</i> (0) Exon 8-12 4	(0) PALB2 (0) Pathogeni Likely Pathogenic	(0) PMS2 (0) city ogenic
(0) EPCAM (0) POLD1 (0) Primary Fi Gene BRCA2 MSH6 RET Interpretat	(0) <i>KLLN</i> (0) <i>POLE</i> (0) indings Type CNV Heterozygou	(0) <i>MEN1</i> (0) <i>PTEN</i> (1) <i>Varia</i> 4 exc is NM_ is NM_	(0) <i>MLH1</i> (0) <i>RAD51C</i> (0) ant on duplication 000179.2:c.20 020975.4:c.20	(0) MSH2 (0) RAD51D (0) spanning 8,1 633T>C(NP, 996C>T(NP,	(1) MSH6 (1) RET (1) 812bp _000170.1:p.Va	(0) MUTYH (0) STK11 (0) al878Ala)	(0) <i>NBN</i> (0) <i>TP53</i>	(0) <i>NF1</i> (0) <i>VHL</i> (0) Exon 8-12 4	(0) PALB2 (0) Pathogeni Likely Pathogenic	(0) PMS2 (0) city ogenic

Questions or more info:

- Email info@goldenhelix.com
- Request an evaluation of the software at <u>www.goldenhelix.com</u>

