

Comprehensive Clinical Workflows for Copy Number Variants in VarSeq

Gabe Rudy – VP Product & Engineering

Top 10 Analytics Solution Providers

Hype Cycle for Life sciences

1 Overview Golden Helix

2 CNVs as Part of Clinical Interpretation Workflow

3 VarSeq Demo and Walk Through

4 Up Next & Annoucements

Questions during the presentation

Use the Questions pane in your GoToWebinar window

- Quest	ions		2 ×
🛛 Show	Answere	d Questions	
х	G	Question	Asker
Ask Que	stions Her	e	
			<u>~</u>
Send Pri	ivately	Send to All	•

Golden Helix – Who We Are

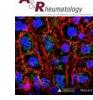
Golden Helix is a global bioinformatics company founded in 1998.

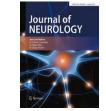
Variant Calling Filtering and Annotation Clinical Reports CNV Analysis Pipeline: Run Workflows

Variant Warehouse Centralized Annotations Hosted Reports Sharing and Integration

GWAS Genomic Prediction Large-N-Population Studies RNA-Seq Large-N CNV-Analysis

Cited in over 1100 peer-reviewed publications



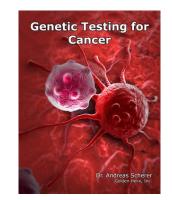

AJHG

Enabling Precision Medicine

Over 350 customers globally



Golden Helix – Who We Are

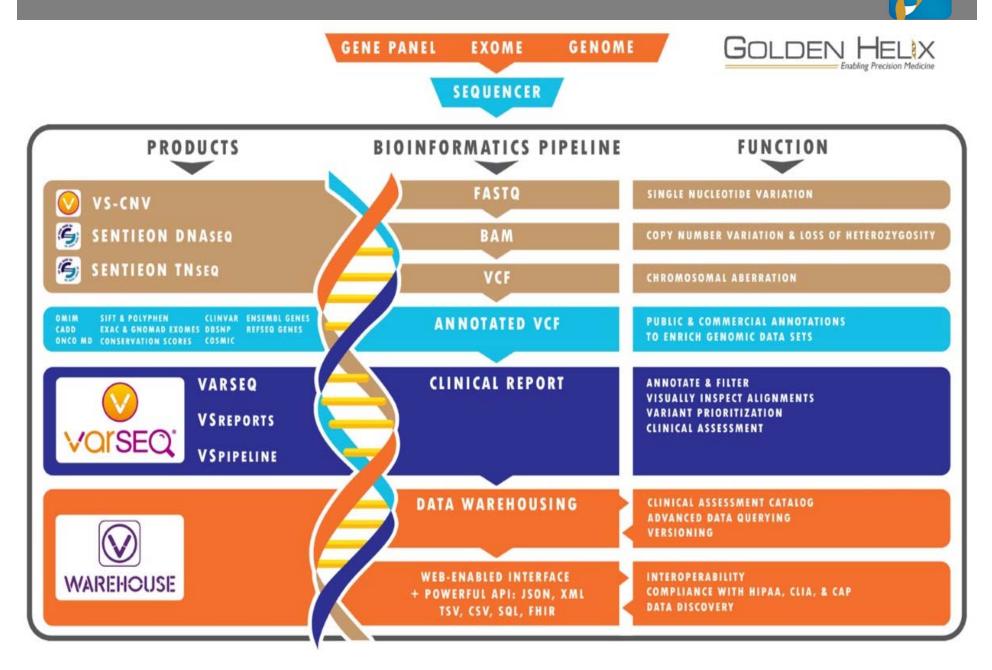


When you choose a Golden Helix solution, you get more than just software

- REPUTATION
- TRUST
- EXPERIENCE

1000000C

- INDUSTRY FOCUS
- THOUGHT LEADERSHIP
- COMMUNITY


- TRAINING
- SUPPORT
- RESPONSIVENESS

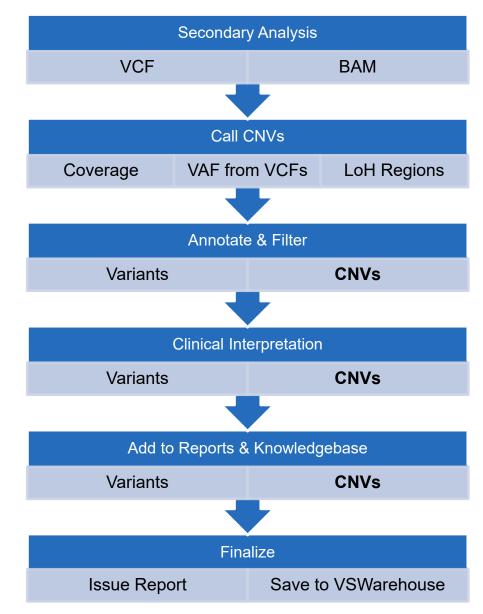
- TRANSPARENCY
- INNOVATION and SPEED
- CUSTOMIZATIONS

VarSeq Clinical Workflows Stack

Clinical Interpretation Workflows (including CNV)

Secondary Analysis

- Sentieon or Other
- Small variants called in VCF
- BAMs provide important coverage data for your targets, also input to CNV


VS-CNV Caller 2.0

- Can incorporate VCF BAF/VAF
- Enhanced by LoH regions (exomes)
- Per-sample CNV calls
 - QC Flags
 - Supporting metrics
 - P-Values

After calling:

 In some cases we want to treat CNVs like small variants in remaining steps of workflow

Why Annotate CNVs?

- Gene Panels (~50 genes)
 - No problem looking at one or two CNVs per sample
 - Often have intuition / experience handling handful of atypical genes (PMS2 false-positive prone etc)
 - Often have pre-existing interpretations for most genes. Focused across a single phenotype

Large Panels / Exomes

- Genes may have multiple phenotype associations
- Includes regions with high levels of CNVs in population catalogs
- Clinical interpretations of existing CNVs important
- Filtering or ranking necessary to reduce manual interpretation to a handful of CNVs

V	🤣 *Prevention Filtered Exomes with CMA - Golden Helix VarSeq 1.4.7 2017-10-05 (22700-f3891b622118) Internal 🦳 🗌 🗙								
<u>F</u> ile	<u>File V</u> iew <u>T</u> ools <u>H</u> elp								
	🖆 🗔 Add 🕻 🖉	Export	🖉 Plot	Connect		RD-CRExome-	47 🗸 🕨	₩ ?	A Samples: 27 Variants: 119,630
	Variants: 119,630 🗙 🔲	Samples:	2 × 🕅 C	loverage R	egions:	193,00 × 🔲	LoH: X	CNVs: 14 🗙	CNVs: 37 × +
CNV	s	▼ ⊡	⊚ ର୍ (. 🗖	Flag	s (Current) is missi	ing: RD-CRExon	ne-47 * 🖍	CNVs: 37
	CNV Info Fl RD-CRExome-47								7
	^ Region	# Targets	Span	Туре	CNVs	CNV State	Avg Z Scor	e Avg Ratio	p-value
	1:905647-909965	14	4319	Loss		Het Deletion	-2.3685	3 0.530871	1.54740724523742e-32
	1:47512129-47515856	4	3728	Gain		Duplicate	2.3589	8 1.39605	5.5225095607625e-09
	1:76251947-76251969	1	23	Loss		Het Deletion	-2.6638	4 0.556166	0.0004025686357636
	1:207715517-207719033	3	3517	Loss		Deletion	-0.73870	8 0	0.0689992681145668
	2:41598-242812076	14704	242770479	Gain		Duplicate	2.2860	3 1.31368	0
	2:98129633-98164204	18	34572	Loss		Deletion	-0.62003		0.000386242609238252
	4:88035509-88116701	19	81193	Gain	U	Duplicate	2.7496		0
	5:65459610-65459760	1	151	Gain		Duplicate	2.6377		0.00111535959877074
	6:160169213-160169692	2	480	Gain	U	Duplicate	2.4547		1.7859860236058e-05
	7:74160666-74166512	6	5847	Loss		Deletion	-0.31669		0.33720850944519
	8:17581171-17581352	1	182	Loss	H	Het Deletion	-4.2735		1.88919688781652e-08
	9:130213550-130213606	1	57	Gain	H	Duplicate	3.3346		3.13410564558581e-05
	9:140881224-140881316	1	93	Gain	H	Duplicate	3.0028		0.000188814723514952
	10:51958801-51972828	8	14028	Loss	H	Deletion	-0.45826		0.123409561812878
	10:51978260-51978400	1	141	Loss	H	Deletion	-0.62936		0.418522894382477
	11:5270588-5271044 11:8959153-8959718	2	457	Loss	H	Deletion	-0.76714 -6.4211		0.129218369722366 4.65501448367933e-17
	12:59313198-59313273	1	566 76	Loss Loss	H	Het Deletion Het Deletion	-0.4211		0.000105544924736023
	13:50243903-50243992	1	90	Loss	ň	Het Deletion	-2.9233		3.13607756652345e-06
	14:24523287-24523357	1	71	Gain	ň	Duplicate	2.6722		0.000951633555814624
	14:53150496-53150635	1	140	Loss	ň	Het Deletion	-2,4354		0.00118756364099681
	15:75341481-75341586	1	106	Gain	ň	Duplicate	3.3294		3.22774940286763e-05
	16:230476-230590	1	115	Gain	ň	Duplicate	2.5197		0.00189464085269719
	16:4386716-4387535	1	820	Gain	ň	Duplicate	4.5075		1.34286954889262e-08
	16:12223477-12223625	1	149	Gain	ŏ	Duplicate	2.7504		0.000659150537103415
	17:20353276-20353442	1	167	Loss	ŏ	Deletion	-1.444		0.0516280271112919
	17:20356320-20359994	4	3675	Loss	ō	Deletion	-0.93471	1 0	0.00859882310032845
	17:34523187-34524082	2	896	Loss	ŏ	Deletion	-0.42251		0.412014037370682
	17:44379994-44405886	6	25893	Loss	Ō	Deletion	-0.44189	2 0	0.187659740447998
	17:44412901-44415099	4	2199	Loss		Deletion	-0.57328	9 0	0.0939922109246254
	17:76198774-76198842	1	69	Gain	Ο	Duplicate	2.6278	1.42902	0.00116717966739088
	19:1452991-1453151	1	161	Gain		Duplicate	2.723	1 1.66166	0.000750205712392926
	19:19748719-19748876	1	158	Gain		Duplicate	2.4919	2 1.44044	0.00213966937735677
	20:1579460-1585715	3	6256	Loss		Deletion	-0.63766	9 0	0.113159634172916
	22:39357382-39357696	1	315	Loss		Deletion	-1.8060	9 0	0.0154550056904554
	X:153496007-153520480	6	24474	Loss		Deletion	-0.95953	1 0	0.059892263263464
	X:154722008-154722371	2	364	Loss		Deletion	-0.73812	5 0	0.143895983695984
<									>
						Navigation	dx: 1.7 Gbp	(1: 111,903,144	, 11.5993) 1 2.7 Kbp

Filtering CNVs

GOLDEN HELIX

- Potentially remove "common"
 - Want to have a match based on type (i.e. is this a common **Gain** or a common **Loss**)
 - Would like to know prevalence in different catalogs
- Remove likely false-positives or common in internal cohort:
 - Labs keep track of previously validated / reported CNVs
- What genes are affected
 - Including gene-based annotations like phenotype derived gene list
- Clinical Classification / Disease Association
 - Prioritize Pathogenic, Likely Pathogenic
 - Filter out Benign, Likely Benign
- In regions of potential difficulty in genome

VOT(ClinicalSignificance is (Benign, Benign/Like	¥ -
ClinicalSignificance - Overlapping CNVs ClinVar CNVs and Large	
Benign	1
Benign/Likely benign	0
Conflicting data from submitters	0
Likely benign	0
Likely pathogenic	0
Not provided	0
Pathogenic	0
Uncertain significance	0
Missing	34
	0 34
✓ p-value (Current) < 0.001	4 -
0.001	im.
	+
Less than 0.001	24
Equal to 0.001	0
Greater than 0.001	10
Missing	0
٥	0 24
OMIM Genes with Phenotypes is true	s =
True	6
False	18
Missing	0
	06

Sources for Annotating CNVs

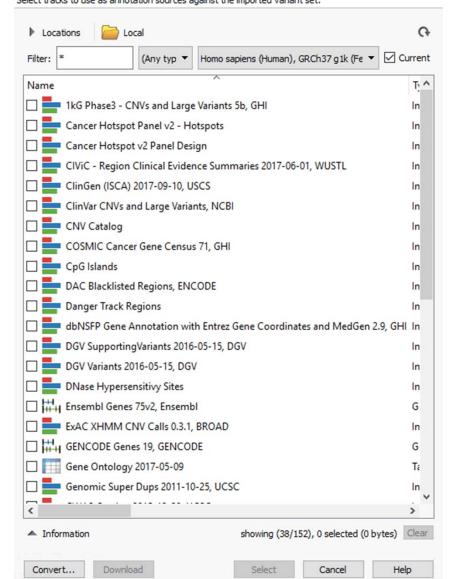
CNV calls in Populations:

- 1000 Genomes Phase3 Large Variants
- ExAC per-sample CNV calls
- DGV large-cohort studies

Clinical Interpretations:

- ClinVar Large Variants
- ClinGen (Previously ISCA)

Genes


- Gene track, which transcripts/exons
- Special considerations considering large sizes

Regions

- Genomic Superdups (Large Scale)
- Low Complexity Regions (Smaller Scale)

×

Annotation Algorithms: For CNVs / Coverage Regions

View

Project/Cohort

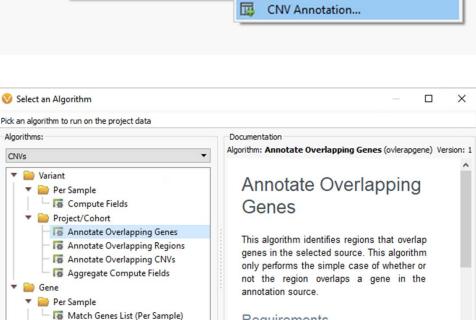
Match Genes List

Match Genes Linked to Phenotypes

File

Tools Help

Filter C 🗔 Variant Annotation...


Secondary Tables

Computed Data...

RD-CRExome-19

- Need different algorithms than those used for variants
- Specialized to annotation data
- Annotate Overlapping Genes
 - Genes and transcripts
- Annotate Overlapping Regions
 - Generic intervals
- Annotate Overlapping CNVs
 - Catalogs containing CNVs
- Other algorithms work on "CNVs"
 - Compute fields (combine / mutate fields)
 - Match Gene Linked to Phenotypes
 - Match Gene List

*PG Exomes 17-20 - Golden Helix VarSeg 1.4.7 2017-10-05 (22700-f3891b622118) Internal

园

园

Note ×\+

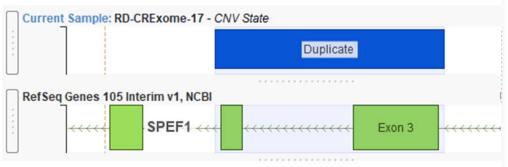
Add LoHs...

Coverage Region Annotation...

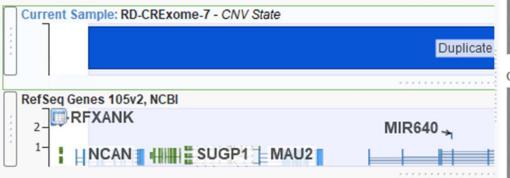
Add C Export 1/ Plot Ocnnect

Requirements

An annotation source to use for annotating the regions.


OK

Cancel


GOLDEN HELEX

Annotation Algorithms: Overlapping Genes

Overlapping a few exons:

Overlapping many genes:

):3759588-3760009	(422 bp)		
/g Z Score: 2.4057			
Overlapping Gene	es RefSeq Gen	nes 105 Interim v1, NCBI	
Gene Names SPE	F1		
#Genes 1			
		des la sector de la sector	
Overlapping Tran	scripts RefSeq	Genes 105 Interim v1, NCBI	
Overlapping Trans	scripts RefSeq 1	Genes 105 Interim v1, NCBI	
Overlapping Trans	scripts RefSeq 1 NM_015417.4	Genes 105 Interim v1, NCBI	
	1	Genes 105 Interim v1, NCBI	
Transcript Name	1 NM_015417.4	Genes 105 Interim v1, NCBI	

19:19329714-19779785 (450.1 Kbp) Span: 450072

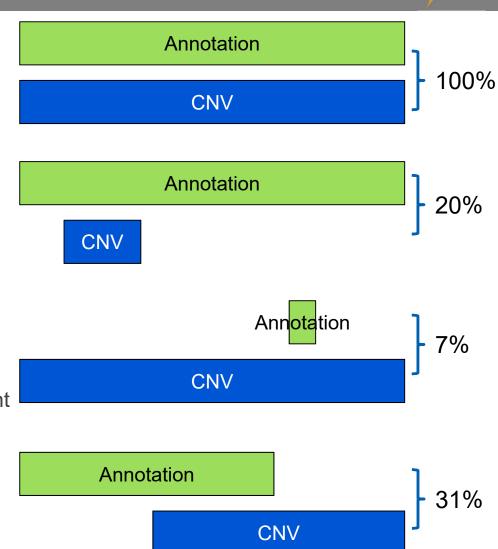
Overlapping Genes RefSeq Genes 105 Interim v1, NCBI

Gene ATP13A1, CILP2, GATAD2A, GMIP, HAPLN4, LPAR2, MAU2, NCAN, NDUFA13, PBX4, SUGP1, TM6SF2, TSSK6, YJEFN3, ZNF101
#
Genes

Overlapping Transcripts RefSeq Genes 105 Interim v1, NCBI

		2	3	
Transcript Name	NM_004386.2	NM_001300949.1	NM_033204.3	
Gene Name	NCAN	ZNF101	ZNF101 1.27726	
% Covered	82.7905	5.36668		
Overlapping Exons	3-15	1	1	

Overlapping Tx Aux Fields RefSeq Genes 105 Interim v1, NCBI

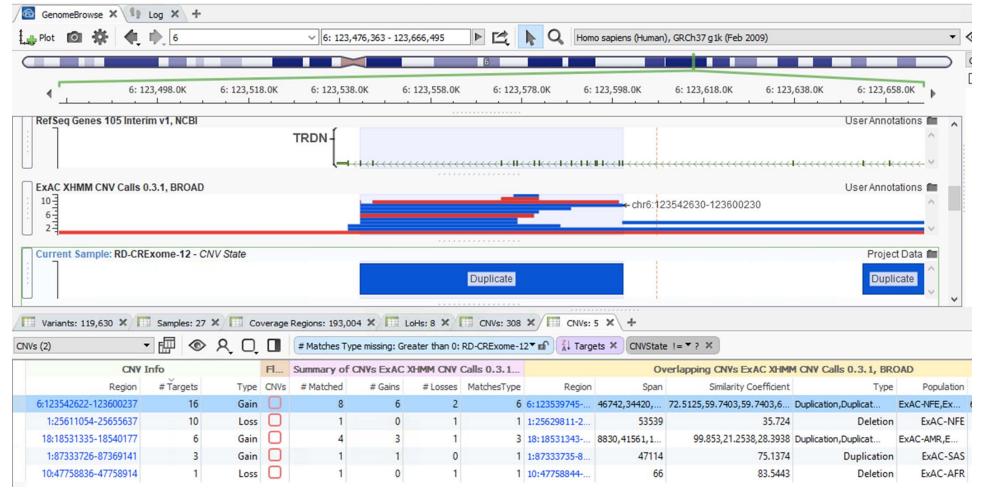

~

Annotation Algorithms: Overlapping Regions

- Not expect exact matches
- Percent overlap not correct metric
- Need metric of "sameness"
- Jaccard index:
 - "similarity coefficient"

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}$$

- For fully overlapped regions, the percent overlap of the smaller to the larger
- Default value of 20% for annotations
- If set to 0%, then any overlap matches
- If set to 100%, then exact matches

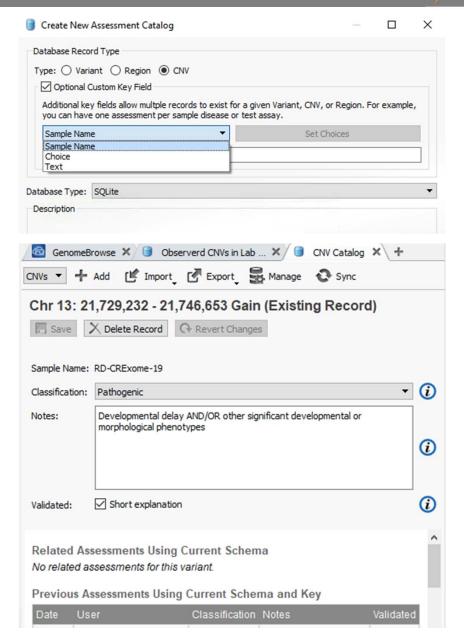

Annotation Algorithms: Overlapping CNVs

First Match based on Overlap Regions

- Use 20% similarity coefficient

• Then Match the CNV Type to the CNV Type of the source:

Knowledge Capture for CNVs


Assessment Catalogs

- Capture knowledge
- Custom field schema
- Act as annotation/plot sources

Use Cases

- Clinical assessments
- All QC'd CNVs catalog
- Gene / Region interpretations
- New "Custom Key"
 - Can be auto-set to sample
 - Can set to phenotype
- CNV Catalogs
 - Automatically capture the CNV "Type" (Gain vs Loss)
 - Centralize on VSWarehouse

VarSeq Demonstration

Looking Forward

Release Schedule

- VarSeq 1.4.7 (early October)
- VSWarehouse 1.4 (late October)

• Up Next for VarSeq:

- Improved clinical interpretation of variants with emphasis on accurate and up-to-date per-transcript in-silico predictions
- Per-transcript splice site prediction algorithms in VarSeq
 - SpliceSiteFinder-like, MaxEntScan, GeneSplicer, HumanSplicingFinder, NNSplice
- Pre-transcript functional prediction in VarSeq
 - SIFT, PolyPhen2
- Per-base conservation scores and multispecies alignment

Announcements

Next Webcast: October 11th!

- CNV Annotations: User Experience
- Building some of these workflows from scratch
- More examples of the interpretation process
- VSWarehouse Integration

Golden Helix at ASHG 2017!

- Booth 902
- Come see demos and ask us questions!

See Gabe's talk at pre-ASHG meeting

- "Rethinking the 5 splice site algorithms used in clinical genomics"
- October 17, HGVS meeting @ Hilton

Questions or more info:

- Email info@goldenhelix.com
- Request an evaluation of the software at <u>www.goldenhelix.com</u>

